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Constructing Mass-Conserved On-Site Boundary Condition Using Third-Order 
Moments for Lattice Boltzmann Simulations

1.Abstract
This work is aiming to prove the feasibility and the advantages of using the novel concept to couple extended cell-scale CCM-based (central 

carbon metabolism) structured deterministic kinetic models with bioreactor classical dynamic models (including macro-scale state variables). This 
work presents a holistic ‘closed loop’ approach for the development of models of biological systems. The ever-increasing availability of experimental 
(qualitative and quantitative) information, at the cell metabolism level, but also on the bioreactors’ operation necessitates the advancement of a 
systematic methodology to organize and utilize these data. The resulted hybrid structured modular dynamic (kinetic) models (HSMDM) were proved 
to successfully solving more accurately difficult bioengineering problems. In HSMDM, the cell-scale model part (including nano-level state variables) 
is linked to the biological reactor macro-scale state variables for improving the both model prediction quality and its validity range. The three 
approached examples here include development of HSMDM-s able: (case study no.1) to simulate the dynamics and to optimize the mercury uptake 
from wastewaters in a semi-continuous (SCR) three-phase fluidized bioreactor (TPFB), or (case study no.2) to simulate the dynamics of a fed-batch 
bioreactor (FBR) at both cell- and bulk-phase species levels, aiming to maximize the tryptophan (TRP) production, or (case study no.3) to optimize the 
both production of biomass and succinate (SUCC) in a batch bioreactor (BR). In all case studies, in-silico designed genetically modified (GMO) E. coli, or 
other bacteria cultures have been used. As proved, there are multiple advantages of using extended HSMDM-s. Thus, in the case study (no.1), a higher 
prediction detailing degree is reported, that is prediction of the dynamics of [26(cell species) + 3(bulk species)] vs. only [3 (bulk species)] by a classical 
macroscopic SCR- TPFB model, while covering a wider range of input [Hg2+] loads, with using cloned E. coli cells with various amounts of mer-plasmids 
[Gmer]. Also, the HSMDM offers the possibility to predict the bacteria metabolism adaptation to environmental changes over dozens of cell cycles, 
and the effect of cloning cells to modify their behavior under stationary or perturbed SCR operating conditions. In the case study (no.2) the HSMDM 
realizes a higher prediction detailing degree, by predicting the dynamics of [11(cell species) + 4(bulk species)] vs. only [3 (bulk species)] by a classical 
macro-level FBR model, while covering a wider range of control variables, and various GMO E. coli cells strains. Eventually this latter HSMDM model 
was used to derive the optimal operating policy of a FBR leading to the TRP production maximization. Besides, the HSMDM flexibility is high enough 
to consider a larger number of control variables for the studied bioreactors, that is: (i). biomass concentration, the inlet feed flow-rate, the inlet [Hg2+], 
and the [Gmer] concentration in the used cloned cells for the case study (no.1) and, (ii). the inlet feed flow-rate, and inlet substrate concentration 
[GLC] for the case study (no.2). (iii). In the case study (no.3), the HSMDM generates a Pareto-front of optimal operating alternatives of an BR, by using 
various in-silico design E. coli mutants. This approach uses the HSMDM model and a mixed-integer nonlinear programming (MINLP) rule, coupled with 
an effective adaptive random search to determine the optimal metabolic fluxes of a GMO in respect to multiple economic objectives associated to the 
gene knockout strategies.  Exemplification is made for the case of designing an E. coli GMO that realizes maximization of both biomass and succinate 
production in an BR by using an extended structured CCM model from literature. Comparatively to the linear procedure LP that solves a combinatorial 
problem in a bi-level optimization approach, of dimensionality sharply increasing with the number of removed genes, the MINLP alternative using the 
HSMDM model includes the nonlinear influence of fluxes, and the number of checked knockout genes to the main goals. Besides, in case study (no.3), 
the HSMDM realizes a higher prediction detailing degree, by predicting the metabolic fluxes dynamics of [72(cell species), involved in 95 reactions + 
1(bulk species, i.e. the biomass)] vs. only [1 (bulk species)] by a classical macroscopic BR model, while covering a wider range of control variables, and 
GMO E. coli strains.

2. Keywords: biochemical engineering concepts applied in bioinformatics; hybrid structured modular dynamic models; three-phase fluidized 
bioreactor for mercury uptake by cloned E. coli cells; fed-batch bioreactor for tryptophan production using genetically modified E. coli cells; mercury-
operon expression regulation in modified E. coli cells; genetic regulatory circuits (GRC, GRN); individual gene expression regulatory module (GERM); 
cloned E. coli cells with mer-plasmids; WCVV (whole cell variable cell volume) modelling framework; gene knockout strategies to design optimized 
GMO for succinate production in GMO E. coli cells; Pareto optimal front to maximize both biomass and succinate production in the design GMO cells

Abbreviations1: CCM: central carbon metabolism; FBR: fed-batch bioreactor; GERM: Individual gene expression regulatory module; GRC: genetic 
regulatory circuits; HSMDM: hybrid structured modular dynamic (kinetic) model; P.I: GRC performance indices; SCR: semi-continuous reactor; TPFB: 
three-phase fluidized bioreactor; TRP: tryptophan; WCCV: whole cell constant cell volume modelling framework; WCVV: whole cell variable cell volume 
modelling framework

Abbreviations2: ADP, adp: adenosin-diphosphate; AMP, amp: adenosin-monophosphate; ATP, atp	 :adenosin-triphosphate; BCE: (bio)
chemical engineering; CCM: Central carbon metabolism; G: The active Gene (DNA); GRC, GRN: Genetic regulatory circuits; GERM: Gene expression 
regulatory module; GMO: Genetically modified micro-organisms; GP: The inactive complex of G with the transcription factor P (its encoding protein 
in the reduced model here); GS: genetic switch; L: Species at which regulatory element acts; M: mRNA; Met (MetG, MetP): Metabolites (lumped DNA 
and protein precursor metabolites, respectively); MINLP: mixed-integer nonlinear programming; nM: Nano-moles/L, nano-molar (i.e. 10-9 mol/L 
concentration); NG: Negligible; Nut (NutG, NutP): Nutrient (external nutrients imported to produce metabolites involved in the G and P synthesis 
respectively); ODE: Ordinary differential equations; P: Protein; PTS: Phosphotransferase; PPP: Pentose-phosphate pathway; Re(x): Real part of ”x” 
variable; TF: Transcription factor; TCA: Citric acid cycle; QSS: Quasi steady-state; WC: Whole cell; WCCV: Whole cell of constant volume hypothesis; 
WCVV: Whole cell of variable volume hypothesis; [.]: Concentration”.
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3. Symbols used in the chap. 4
Cj - species (lump, or ‘pool’) concentration

D, Ds- cell content dilution rate (i.e. cell-volume logarithmic

growing rate), under QSS cell growing conditions

(balanced growth at homeostasis QSS = quasi steady state)

g, h - kinetic model function vector

J= dg / dC - kinetic model Jacobian matrix

k - rate constant vector

nj - species ”j” number of moles, or number of effector

species binding the catalyst ”L” in a GERM

nr - number of reactions

ns - no. of species

NA-theAvogadro number

rj - species ”j” reaction rate

R - universal gas constant

t - time

tc - cell-cycle time

T - temperature

V - cell volume

Greeks -

λ  (J) - eigenvalues of the dynamic model Jacobian

ijυ  - stoichiometric coefficient of the species “j”(individual or lumped) in the reaction “i”;

π - osmotic pressure

jτ - species ”j” recovering time of the steady-state with an accepted tolerance (usually 1-5%)

Index

cyt - cytoplasma

env - environment

0 - initial

s -  Stationary state

perturb- perturbed



Hybrid dynamic models linking cell-scale structured CCM pathways, genetic regulatory circuits GRC, 
and bioreactor state variables. Applications for solving bioengineering and bioinformatics problems 

Hybrid dynamic models linking cell-scale structured CCM pathways, genetic regulatory circuits GRC, 
and bioreactor state variables. Applications for solving bioengineering and bioinformatics problems 

07

Acknowledgements

The author is deeply grateful to the following professors, who were kind enough to accept his scientific collaboration during their short (3 
months) stays in their laboratories (summer 2006 to Prof. Deckwer, and summer 2009 to Prof. Zeng). In particular, the author is grateful for the 
generosity by which the two Professors provided him with basic information and experimental data in order to further elaborate structured 

cellular models for the case study no. 1 (Prof. Deckwer)[1,2], and for the case study no. 2 (Prof. Zeng) [3].

Late Prof. Dr.-Ing. habil. Wolf-Dieter Deckwer (1941 –  2006)
Technischen Universität Carolo-Wilhelmina at Braunschweig

also with:
German Research Centre for Biotechnology

(currently:
Helmholtz Centre for Infection Research)

Prof. Dr.-Ing. habil. An-Ping Zeng
Hamburg University of Technology

Institute of Bioprocess and Biosystems Engineering



Hybrid dynamic models linking cell-scale structured CCM pathways, genetic regulatory circuits GRC, 
and bioreactor state variables. Applications for solving bioengineering and bioinformatics problems 

08

Introduction
General concepts

”As proved in the literature, the in-silico (math/kinetic model-based)numerical analysis of biochemical or biological processes 
are proved to be not only an essential but also an extremely beneficial tool for engineering evaluations aiming to determine the 
optimal operating policies of complex multi-enzymatic

reactors [5-10], or bioreactors [11-13].

In the biochemical reactor case, the trend is to use complex multi-enzymatic systems to successfully replace complex 
chemical syntheses, by using milder reaction conditions, and generating less waste.

Even if the multi-enzymatic systems are advantageous, the engineering part for optimizing such a complex process is not an 
easy task because it must account for the interacting enzymatic reactions, enzymes deactivation kinetics (if significant), multiple 
and often opposed optimization objectives, technological constraints, and uncertainties coming from multiple sources (model 
/ constraints inaccuracies, disturbances in the control variables), and a highly nonlinear process dynamics [5,6,8,11,14,15]. 
All these parametric/model/data uncertainties require to update (with a certain frequency) the enzymatic process model, the 
optimal operating policies of the reactor being determined by using rather deterministic (model-based) optimization rules [16]. 
Multi-objective criteria, including economic benefits, operating and materials costs, product quality, etc., are used to off-line, 
or to on-line derive feasible optimal operating/control policies for various bioreactor types [15] by using specific numerical 
algorithms [6,13,17,18,19].

In the biological reactor case, development of extended cell-scale CCM structured kinetic models on 
a deterministic basis to adequately simulate in detail the cell metabolism self-regulation, cell growth, and 
its replication for such an astronomical cell metabolism complexity is practically impossible due to the lack 
of structured and comprehensive information, and computational limitations. A review of some trials is presented by Styczynski 
and Stephanopoulos [20], and by Maria [21-23]. That is because the cell metabolism is highly sophisticated, involving O(103-4) 
components, O(103-4) transcription factors (TF-s), activators, inhibitors, and at least one order of magnitude higher number of 
(bio)chemical reactions, all ensuring a fast adaptation of the cell metabolism to the changing environment through complex 
genetic regulatory circuits (GRC-s), that includes individual or chains of „gene expression regulatory modules of reactions 
(GERMs), genetic switches, operon expression, etc. [21-23]. The cell is highly responsive to the environmental stimuli and highly 
evolvable by self-changing its genome/proteome and metabolism, that is the stoichiometry and the reaction rates (fluxes) of the 
enzymatic reactions to get an optimized and balanced growth by using minimum resources (nutrients/substrates).

In spite of such tremendous modelling difficulties, the development of structured reduced deterministic (rather than stochastic) 
models [24] able to adequately reproduce the dynamics of some CCM complex metabolic syntheses [20,25,26], but also the 
dynamics of the GRC-s [21-23] tightly controlling the metabolic processes reported significant progresses over the last decades 
[27,28]. Even if they are rather based on sparse information from various sources, unconventional statistical identification, and 
lumping algorithms [21-23,29], such structured reduced deterministic kinetic models have been proved to be extremely useful 
for in-silico analyse and characterize the CCM, for designing novel GRC-s conferring new properties/functions to the mutant 
cells, or for engineering bioreactor evaluations. [3, 12, 21-23, 30].

The current (default) approach to solve the model-based design, optimization and control problems of industrial biological 
reactors is the use of unstructured models of Monod type (for cell culture reactors) or of Michaelis- Menten type (if only enzymatic 
reactions are retained) that ignores detailed representations of cell processes. The applied engineering rules are similar to those 
used for chemical processes and inspired from the nonlinear system control theory [13,15,31,32,33-38]. However, by accounting 
for only key process variables (biomass, substrate and product concentrations), these models do not properly

reflect the metabolic changes, being unsuitable to accurately predict the cell response to environmental perturbations by 
means of (self-) regulated cell metabolism [39,40].

The alternative is to use structured kinetic models, by accounting for cell metabolic reactions and component dynamics. Such 
deterministic models lead to a considerable improvement in the predictive power, with the expense of incorporating a larger 
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number of species mass balances including parameters (rate constants) difficult to be estimated from often incomplete data and, 
consequently, difficult to be used for industrial scale purposes. [40,41].

As a result, an impressive large number of valuable structured deterministic models (based on a mechanistic description 
of the metabolic enzymatic reactions tacking place among individual or lumped species) have been proposed in the literature 
to simulate the cell CCM dynamics, with including tenths-to-hundreds of key species. Here, it is worth mentioning the E. coli 
model of Edwards and Palsson [4] used by [25,42-47] for various purposes, or the S. cerevisiae glycolysis model of Teusink 
et al. [48], or the JWS platform of Olivier and Snoep [49], and the MPS platform of Seressiotis and Bailey [50] to simulate cell 
metabolism (dynamics and/or stationary fluxes), to mention only few of them. Simulation platforms, such as E-cell of Tomita et 
al. [51,52], or V-cell of Slepchenko et al. [53], accounting for thousands of species and reactions, display extended capabilities 
to predict the dynamics of the cell metabolism under various conditions, based on EcoCyc, KEGG, Prodoric, Brenda and other 
–omics databanks (review of Maria [23]). A worthwhile CCM-based dynamic or stationary models were reported by Maria et al. 
[3,25,42] and schematically represented in (Figure 4-1). 

Meritorious structured deterministic CCM kinetic models have been reviewed by Maria [22]. Deterministic kinetic models 
using continuous variables has been developed by Maria [25] for the glycolysis, and by [43,54-57] for the CCM in bacteria of 
industrial interest. Such models can adequately reproduce the cell response to continuous perturbations, the cell model structure 
and size being adapted based on the available –omics information. Even if such extended structured models are currently used 
only for research purposes, being difficult to be identified, it is a question of time until they will be adapted for industrial /
engineering purposes in the form of reduced hybrid structured modular dynamic(kinetic)models HSMDM.

This work presents a holistic ‘closed loop’ approach for the development of models of biological systems [358]. The ever-
increasing availability of experimental (qualitative and quantitative) information, at the cell metabolism level, but also about 
the bioreactors’ operation necessitates the advancement of a systematic methodology to organise and utilise these data. The 
resulted HSMDM were proved to successfully solving more accurately difficult bioengineering problems. In such HSMDM, the 
cell-scale model part (including nano-level state variables) is linked to the biological reactor macro-scale state variables for 
improving the both model prediction quality and its validity range. The two case studies presented and discussed here proves 
this engineering aspect.

An alternative compromise is to use hybrid models that combine unstructured with structured process characteristics to 
generate more precise predictions (see the review of Maria [3]). Basically, hybrid models use a two-level hierarchy: the bioreactor 
macroscopic state variables linked with the nano-scale variables describing the cell key metabolic processes, and those of 
practical interest. 

In fact, such a hybrid structured cell dynamic model must include only the essential parts of the central carbon metabolism 
(CCM), by incorporating the pathway responsible for the target metabolite synthesis, and the lumped modules of the cell core, 
that is the glycolysis, the GLC uptake system (i.e. the phosphotransferase (PTS), or an equivalent system), the ATP-recovery 
system (adenosin-triphosphate cycle), TCA (citric acid cycle), PPP (Pentose-phosphate pathway), and other reaction pathways 
modules if necessary in the CCM simulations. See for instance the discussion of Maria et al. [25,39,42,58].

A special interest was given to the accurate modelling of the glycolysis dynamics and its self-regulation [25,39,59-61] as long 
as most of the glycolysis intermediates are starting nodes for the internal production of lot of cell metabolites (e.g. amino-acids, 
or succinate (SUCC), citrate (CIT), amino-acids, like cysteine, lysine, phenyl-alanine, tryptophan (TRP), etc. [11,42,61,62]. 

This need to have good quality structured cell models to simulate the dynamics (and regulation) of the bacteria CCM became 
a subject of very high interest over the last decades, allowing in-silico design of GMO-s with desirable characteristics of various 
applications in the biosynthesis industry, civil engineering, and other fields [21-23]. 

HSMDM advantages  Even if such a complex / extended model requires more experimental and computational efforts to be 
built-up, as proved by the two approached case studies of this work, the resulted hybrid (bi-level, that is cell species, and macro-
level bioreactor state variables) dynamic models (HSMDM) present a large number of advantages compared to the classical 
(default) unstructured models of Monod type (for cell culture bioreactors), or of MichaelisMenten type (if only enzymatic 
reactions are retained) that ignores detailed representations of cell processes. Thus, among the multiple advantages of HSMDM 
models, are to be mentioned:
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a)	  A higher prediction detailing degree. Thus, for the below case study (no.1) of chap. 5, a higher prediction detailing 
degree is reported, that is predicted dynamics of [26(cell species) + 3(bulk species)] vs. only [3 (bulk species)] by a classical 
macroscopic SCR- TPFB model, while covering a wider range of input [Hg2+] loads, with using cloned E. coli cells with various 
amounts of mer-plasmids [Gmer]. In the case study (no.2) of chap. 6, the HSMDM realizes a higher prediction detailing degree, 
by characterizing the dynamics of [11(cell species) + 4(bulk species)] vs. only [3 (bulk species)] by a classical macroscopic FBR 
model, while covering a wider range of control variables, and various GMO E. coli cells strains.

b)	 Prediction of the inner cell key reaction rates (different from the apparent rates observed in the bioreactor). See the case 
study (no.1), of [1,2,40], and the case study (no.2) of [3,12]; 

c)	 The model predictions can cover a wide range of input/control variables of the bioreactor. Thus, for the case study 
(no.1), the HSMDM of Maria and Luta [40] realizes a higher prediction detailing degree, that is [simulated 26(cell species) + 
3(bulk species)] vs. only 3 (bulk) variable dynamics predicted by a classical macroscopic SCR- TPFB model, while covering a 
wide range of input [Hg2+] loads (0–100 mg/L), and cloned E.coli cells with various amounts of mer-plasmids [Gmer] of (3–140 
nM). 

d)	 The HSMDM model can predict the bacteria metabolism adaptation to environmental changes over several cell cycles, 
and the effect of cloning/GMO cells to modify their behavior under stationary or perturbed bioreactor operating conditions. See 
the case study (no.1) in chap. 5 for details.  

e)	 The extended HSMDM can offer predictions of a higher accuracy when they are used to in-silico (model-based) 
engineering developments (bioreactor design, and its off-line optimization) compared to unstructured models (see the chap. 
5-6 for the bioreactor cases). For instance, the model could better predict the optimal time stepwise feeding policy of a fed-batch 
reactor (FBR) to increase the tryptophan (TRP) production (the case study (no.2) in chap. 6) [3,12]. In the case study (no.1) of 
chap. 5, the extended HSMDM allows optimizing the operating policy of a  SCR-  TPFB  regarding the biomass concentration, the 
inlet feed flow-rate, the inlet [Hg2+], the biomass support size, and the [Gmer] concentration in the used cloned cells [40, 63]. 
For a bi-enzymatic reactor case, Maria et al. [9] used a HSMDM to derive optimal operating policies of a FBR by accounting for 
multiple competing optimization objectives.  

f)	 Complex HSMDM-s can be used for bioinformatics purposes, by evaluating the influence of the bioreactor operating 
conditions (that is the control macro-variables) on the dynamics of cell nano-scale key-intermediates and fluxes involved in 
the metabolite synthesis of interest (that is, for the case study no.2 those belonging to glycolysis, ATP-recovery system, and 
TRPoperon expression), thus directing the design of genetically modified cells with desirable ‘motifs’ [3].

g)	 Extended HSMDM can be used to obtain lumped dynamic models for rapid engineering calculations, by employing 
specific model reduction rules and additional kinetic data valid in local operating domains. See [29,64,65 ] for general models, 
or [66,67] for linear models. As a result of such an approach, the bioprocess complexity may be described by a succession of 
local reduced models enfolded on the real process. The local / reduced models include only the key metabolic pathways to obtain 
relevant (of interest) process state predictions; 

h)	 The structured cell models (of HSMDM type) are also useful for understanding the cellular bioprocess in direct 
connection to the bioreactor operating mode. For instance, in the case study (no.2) of chap. 6, it can insilico be determined 
the conditions of occurrence of oscillations for the glycolysis [59], or oscillations in the TRP-operon expression [39,62], or 
those leading to a balanced cell growth (quasi-steady-state QSS, i.e. homeostasis) [58]. In the case study (no.1) in chap. 5, the 
extended HSMDM can predict the mer-enzymes expression levels and the cytosolic mercury reduction rate depending on the 
mer-plasmids level [Gmer] in the cloned E. coli cells.

i)	 Some other case studies supporting the use of complex HSMDM are given by: (a) [42] to design GMO E. coli strains 
for optimizing the succinate production (SUCC) in a batch reactor (BR); (b) reviews of Maria [11], and of Dorka [68] on FBR 
optimization for the monoclonal antibodies (mAbs) production, etc.

j)	 As documented by Maria [21-23], to overcome the cell process dynamics complexity, the metabolic pathway 
representation with continuous and/or stochastic individual or lumped reactions/variables remains the most adequate and 
preferred representation of cell processes, the adaptable-size and structure of the lumped model (species and/or reactions) 
depending on available information and the utilisation scope.
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The main advantages of deterministic / continuous variable kinetic models are coming from the use of experience, concepts, 
math representation, rules, and algorithms of the ‘biochemical reaction engineering’ (Figure 4-2 and Figure 4-3) [21-23,29]. 
The reaction rate expressions in the deterministic models are the usual ones of biochemical reaction engineering, that is of 
Michaelis-Menten, or Hill type (see Figure 4-4). A large number of CCM kinetic models have been reported in the literature, 
such as those of [43,69,70]. A short discussion is given by Maria [3,25]. Such a CCM-based kinetic model (Figure 4-1) was used 
by [3,12] to optimize a FBR. In fact, the glycolysis together with the phosphotransferase (PTS)-system, or an equivalent one for 
GLC-uptake, and with the pentose-phosphate pathway (PPP), and with the tricarboxylic acid cycle (TCA), all these are part of the 
so-called central carbon metabolism (CCM) (Figure 4-1) [42].  

The parameters (rate constants) of deterministic dynamic models are estimated by using the common (bio)chemical 
engineering rules of (Figure 4-2 and Figure 4-3) [21-23,29], by using either dynamic (kinetic) data obtained in a chemostat 
under transient regime (e.g. pulse-like perturbations in the bioreactor influent [43], or using steady-state data (metabolites 
concentrations) obtained at homeostasis (i.e. balanced cell growth, [21-23]), by solving the math model stationary algebraic 
set of species mass balances, by accounting the all species from the reacting system, taken individually or lumped [see eqn.(9)]. 
Parameter estimate must fulfill physico-chemical meaning constraints related to metabolic reaction stoichiometry. Besides, the 
rate constants must be limited by the diffusional processes, and in agreement with the thermodynamic equilibrium steps. 

Because the problem of estimating reaction rate constants for such hybrid structured kinetic models with continuous 
variables (of ODE-type, that is an ordinary differential-algebraic equations set, see below eq.(1) ) in the presence of constraints 
is one of NLP (nonlinear programming) type [29], with a convex search field and a multi-modal objective function, its solution is 
difficult, even if it uses high-performance numerical optimization algorithms included in commercial mathematical software (eg 
Matlab). Therefore, the feasible global solution for such estimation problems was found by applying a very efficient numerical 
algorithm, namely MMA’s optimization procedure of Maria [71,72].

Even if complicated and, often over-parameterized, the continuous variable dynamic deterministic ODE models (eq. 1A-B) of 
the CCM metabolic pathways, or of GRC-s present a significant number of advantages, being able to reproduce in detail molecular 
interactions, the cell slow or fast continuous response to exo/ando-geneous continuous perturbations [20,24]. Besides, the use 
of ODE kinetic models presents the advantage of being computationally tractable, flexible, easily expandable, and suitable to be 
characterized using the tools of the nonlinear system theory [73], by accounting for the regulatory system properties, that is: 
dynamics, feedback / feedforward, and optimality. And, most important, such ODE kinetic modelling approach allows using the 
strong tools of the classical (bio-)chemical engineering (BCE) modelling concepts summarized in (Figure 4-2 and  Figure   4-3 
). The most important ones are the followings [21-23,60,74].

BCE-1. Fulfillment of the molecular species conservation law (analysis; species differential mass balance set)

BCE-2. Fulfillment of the atomic species conservation law (atomic species mass balance); 

BCE-3. The thermodynamic analysis of reactions (that is quantitative assignment of reaction directionality) [75]

BCE-4. Set equilibrium reactions by using Gibbs free energy balance analysis; set cyclic reactions; find species at quasi-
steady-state to replace its differential mass balance with an algebraic equation; 

BCE-5. Extended HSMDM–s allow improved evaluation of steady-state flux distributions (i.e. stationary metabolic reaction 
rates) that provide important information for metabolic engineering [76]

BCE-6. Allow application of ODE model species and/or reaction lumping rules [29,64].

When developing deterministic models for the CCM, or for other cell metabolic processes of a micro-organism, to be further 
used for GMO design, an important aspect is to also include math (kinetic) models of individual GERM-s characterizing the gene 
expression control of the enzymes production. Also, by linking the interfering GERM modules, complex GRC regulatory chains 
can thus be obtained [21-23,77]. 
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Development of dynamic models to adequately reproduce such complex synthesis related to the CCM [43,69,70], but also to 
the GRC-s tightly controlling such metabolic processes reported significant progresses over the last decades in spite of the lack of 
structured experimental kinetic information, being rather based on sparse information from various sources and unconventional 
identification / lumping algorithms [21,24,29,64,78]. However, such structured models are extremely useful for in-silico design 
of novel GRC-s conferring new

properties/functions to the mutant cells, in response to external stimuli [42,79, 80-83, 85-90]. This topics belongs to the so-
called ’computational systems biology’, or simply ’bioinformatics’. In fact, the two emergent research/applicative fields are 
closely inter-connected, as depicted in (Figure 4-59). 

Systems Biology, is defined as “the science of discovering, modelling, understanding and ultimately engineering at the 
molecular level the dynamic relationships between the biological molecules that define living organisms” (Leroy Hood, Head 
Inst. Systems Biology, Seattle, USA). Systems Biology is one of the modern tools, which uses advanced mathematical simulation 
models for insilico design of GMOs that possess specific and desired functions and characteristics. The works of Maria [21-23] 
presented a short review about Systems Biology , by including a short history, their modern concepts, and their (math/numerical-
experimental) rules/tools, together with the (bio)chemical engineering (BCE) principles and deterministic modelling rules used 
by the Systems Biology for modelling cellular metabolic processes. This involves application of the classical BCE modelling 
techniques (mass balance, thermodynamic principles), algorithmic rules, nonlinear system control theory, and bioinformatics 
rules, briefly presented in (Figure 4-2, and Figure 4-3), and in the above (BCE1-BCE6) issues. The main principles, concepts, and 
rules of the BCE are shortly reviewed by [117-121]. The metabolic pathway representation with continuous and/or stochastic 
variables remains the most adequate and preferred representation of the cell processes, the adaptable-size and structure of the 
lumped model depending on available information and the utilisation scope [21-23].

When developing extended structured HSMDM models, besides BCE, and Systems Biology principles and rules (Figure 4-2, 
Figure 4-3, and Figure 4-59), the Bioinformaics concepts and rules play an essential role because they make the connection 
with the bio-omics data banks (see the below cell simulation platforms (a-e) ), from which the most important information 
refers to the genome map and its correspondence to the proteome map for a certain micro-organism. 

Bioinformatics. According to [122], Bioinformatics is an inter-disciplinary field that develops methods and software tools for 
understanding and interpret the biological data, in particular when the data sets are large and complex. As an interdisciplinary 
field of science, the bioinformatics combines several classic/modern disciplines, such as: biology, chemistry, physics, computer 
science, information engineering, mathematics, and statistics to analyze and interpret the biological data. Bioinformatics has 
been used rather for in-silico analyses of biological queries using a large number of computational and statistical techniques, 
aiming to design novel GMO-s of practical (industrial) use [123-133]. The most important rule of Bioinformatics refers to the 
rapid, and computer-rassisted genome sequentiation [122].  Some of the common rules used by bioinformatics are given in 
(Figure 4-60) [122].

Bioinformatics includes biological studies that use computer programming as part of their methodology, as well as specific 
analysis ‘pipelines’ that are repeatedly used, particularly in the field of genomics. Common uses of bioinformatics include 
identification of candidates genes and single nucleotide polymorphisms (SNPs). Often, such identification is made with the aim 
to better understand the genetic basis of disease, unique adaptations, desirable properties (esp. in agricultural species), or 
differences between populations. In a less formal way, bioinformatics also tries to understand the organizational principles 
within nucleic acid and protein sequences, called proteomics [122].

The main objective of the ’computational systems biology’ is to model the kinetics of entire living cells at the molecular level 
on a mechanistic base. Given the enormous complexity and unknown aspects of such systems, formulating reliable models with 
predictive ability remains only a dream. However, advances in genomics, transcriptomics, proteomics, metabolomics, and in the 
computing power provide hope that this objective might be realized within next couple of decades. Bioinformatic databases and 
software platforms are being constructed for modeling entire cells with massive amounts of data [51,52,81,92]. For example,

https://en.wikipedia.org/wiki/Single-nucleotide_polymorphism
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(a)	E-Cell software allows simulating reaction pathways within compartment-based cells using the continuous-differential 
modeling approach [51,52,93,94] (Figure 4-37-left). The computing plaform objects are [compartments, compounds, genes, 
reactions)]. E-cell has been used in conjunction with the EcoCyc [95], and KEGG [96,97] databases to simulate the dynamics of 
127 genes/protein found in M. genitalium. 

(b)	V-Cell [98,99]. The computing plaform objects are (model, geometry & applications, biological interface).

(c)	CellML, JWS (Silicon-cell) [49,100, 101,171,172] is a cell modelling and simulation framework (Figure 4-37-right) with 
compartments and membranes, each of which may include species, reactions and membrane fluxes.

(d)	M-Cell simulation platform of [102] (Figure 4-24-left) allows simulating high-level complex cell sub-systems, such as 
neural communication networks, together with proteins and enzymes involved in exo-/endo-cytosis, synaptic transmission, 
transport and signal reception. The M-Cell simulator includes simulation of Brownian random walk, and Monte Carlo stochastic 
algorithms for modeling small numbers of diffusing ligands interacting with individual 3D binding sites in spatially complex 
environments. 

(e)	The A-Cell platform [103,104] (Figure 4-24-right; Figure 4-20) uses (‚electrical circuit‘ like models) to simulate 
biochemical reaction schemes, neurons connections, and pathways. For other bio-modeling software packages the reader is 
referred to the reviews of [92,103,104,105].

To easier realize the numerical simulations of such complex cell math models, specific programming languages (SBML, 
[92,105]), or on-line simulation platforms (JWS, [49,100]) have been developed. By using such modern computing tools, 
simulation of various biological systems was possible, such as [21-23]:

•	 Single cell growth (e.g. Escherichia coli, Haemophilus influenzae, Mycoplasma genitalium, yeast, etc.

•	 Model metabolic oscillations (red-blood-cell synthesis, glycolysis, TCA cycle, oxidative phosphorylation, key species 
oscillations, etc.) [25,39,58,59,61,62,82, 106].

•	 Metabolic control of protein synthesis regulation (GERM-s, GRC-s) [2123,24,107-112].

•	 Modelling the central carbon metabolism (CCM) [26,43,70]. Some developed dynamic models are given by [25,42,69] 
(Figure 4-38).

•	 FBA (cell flux balance analysis) based design of GMO-s [77] (Figure 4-39, Figure 4-40, Figure 4-41).

•	 Modelling the cell cycle [113, 114].

•	 Modelling the drug release and cell-drug interactions [115,116].

•	 Modelling cellular communications, neuronal transmission

•	 Analysis of ‘logical essence’ of life (life minimal requirements)  

At the same time, the exponential-like increase of the experimental biological information lead to development of valuable  
bio-  omics  databanks, such as (Figure 4-42,  Figure 4-43,  Figure 4-44,  Figure 4-45,  Figure 4-46):

a)	 KEGG [96,97],

b)	 JWS [49,100],

c)	 EcoCyc [95], 

d)	 Roche [134], etc. 

However, it is only over the last decades when Systems Biology reported notable successes due to a considerable increase 
in computing power of the modern computers. It is to mention here, for instance, the cell simulator platforms, and online 
model repository JWS of [49,100], or those developed by Rocha et al. [28], or by Tomita et al. [51,52], together with continuous 
expansion of the bio-omics databases JWS, KEGG, EcoCyc, Roche, etc. and reported advances in the numerical algorithms used 
by bioinformatics, (bio)chemical engineering, and nonlinear systems control theory [21-23].
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Due to such favourable premises, related to the expansion of  bio-  omics databanks, and cell metabolism (CCM, GRC-s) 
dynamic models, novel works have been reported over the last decades. Among the milestone works in Systems Biology it is to 
mention the contributions in modelling / design of GRC-s, GERM-s, FBA, MCA of [73,135-138]. The number of published papers 
in the Systems Biology area increases with two orders of magnitude from 2000 to 2007, and it is still exponentially increasing, 
most of them being founded by programs of the European Science Foundation.

As stated in [139,140], tremendous applications of Systems Biology have been reported over the next decades in the below 
areas (Figure 4-47):   

Designing mutant, cloned cells with desired ‘motifs’

Cell biology

Genetics biology or genetics	 Food science

Biotechnology, Bioengineering	 Immunology

Biomedical engineering	 Molecular biology

Biochemistry	 Biodiversity

Agricultural biology and Ecology	 Bioinformatics

Biophysics

And, before in a context of increasing calls for biology to be predictive, modelling and optimization are the only approaches 
biology has for making satisfactory predictions [141]. Due to the computing facilities offered by the algorithmic rules developed 
by the (bio)chemical engineering and nonlinear systems rules (Figure 4-2,  Figure 4-3,  Figure 4-4,  Figure 4-8), the developed 
cell math models use a vectorial-matriceal approach (Figure 4-48), with a continuous model upgrading based on dynamic 
experimental data recorded in a chemostat (i.e. a continuously operated bioreactor), operated under steady-state, or in a dynamic 
regime following an input perturbation in the substrate/enzymes/biomass concentration in the solution fed in the bioreactor 
[43,77].

Given these developments, as well as the seemingly inexorable advances in computing power, it is tempting to believe that 
reliable whole-cell models (WC) with predictive power will be forthcoming once complete sets of ’bio-omic’ information 
become available. However, a better theoretical understanding of cellular life, viewed holistically, may be required before we 
can understand how life emerges out of complex networks of molecular-level interactions between cellular components. This 
study represents a foyer into whole-cell kinetic modeling, in an attempt to understand holistic aspects of cell-system from a 
quantitative computational perspective.

The scope of this chapter is to examine some fundamental properties of living cells relevant to whole-cell modeling. Thus, a 
methodology to build-up regulatory kinetic schemes in a ’whole cell variable cell volume’ (WCVV) modelling framework, and 
stationary/perturbed environmental conditions is developed for a generic protein/gene (P/G) pair synthesis process. The model 
elements of novelty consist in accounting variable cell-volume, and constant osmotic pressure conditions, and thus removing 
some drawbacks of classical (default) continuous-concentration-based simulators. Exemplification is made for several simple 
genetic regulatory schemes (GRC, or GRN) extracted from literature [21-24], and the impact of developed modeling approach 
on the prediction results is studied, such as: a more realistic prediction of regulatory scheme sensitivity to both stationary and 
dynamic perturbed conditions; increased species interconnectivity; effect of cell-ballast on cell-behavior vs. various types of 
perturbations; a more realistic way to design interconnected regulatory modules and links in GRC-s in a common volume growing 
environment. Other analysis aspects, not developed in this paper, can be easily approached under the present hypotheses such 
as system multiplicity, and characterization of periodic cell-phenomena. 

Modelling GRC under a WCVV framework
Because the GRC-s are responsible for the control of the cell metabolism, the adequate kinetic modelling of the constitutive 

GERM-s, but also the adequate representation of the linked GERM regulatory efficiency in a GRC is an essential step in describing 
the cell metabolism regulation via the hierarchically organized GRC-s (where key-proteins play the role of regulatory nodes). 
Eventually, such models allow simulating the metabolism of modified cells. [21-23]



Hybrid dynamic models linking cell-scale structured CCM pathways, genetic regulatory circuits GRC, 
and bioreactor state variables. Applications for solving bioengineering and bioinformatics problems 

Hybrid dynamic models linking cell-scale structured CCM pathways, genetic regulatory circuits GRC, 
and bioreactor state variables. Applications for solving bioengineering and bioinformatics problems 

015

Various simple math models have been proposed to represent the elementary metabolic fluxes of a CCM [142], or of a GRC 
[20,81-85,106,138,143-162]. Eventually, such models allow a multi-criterion design and optimization of a target GRC-s [163].

Development of dynamic models to adequately reproduce such complex synthesis related to the CCM [43,69,70], but also to 
the GRC-s tightly controlling such metabolic processes reported significant progresses over the last decades in spite of the lack of 
structured experimental kinetic information, being rather based on sparse information from various sources and unconventional 
identification/lumping algorithms [29,67,78]. However, such structured models are extremely useful for in-silico design of novel 
GRC-s conferring new properties/functions to the mutant cells, in response to external stimuli [42, 79-83, 86-90, 164-167].   

A central part of cell metabolic models concerns self-regulation of the metabolic processes via GRC-s. Consequently, one 
particular application of such dynamic cell models is the study of GRC-s, in order to predict ways by which biological systems 
respond to signals, or environmental perturbations. The emergent field of such efforts is the so-called ‘gene circuit engineering’ 
(GCE) and a large number of examples have been reported with in-silico re-creation of GRC-s conferring new properties/
functions to the mutant cells. By using simulation of gene expression, the GCE in-silico design GMO that possess specific and 
desired functions. By inserting new GRC-s into organisms, one may create a large variety of mini-functions / tasks (or desired 
‘motifs’) in response to external stimuli [23].

When the cell-model used to construct an extended HSMDM includes individual GERM-s (Figure 4-7, Figure 4-9), or complex 
GRC-s gathering chains of inter-connected GERM-s, genetic switches (Figure 4-5), or operon expression (Figure 5-1), genetic 
amplifiers, etc. [21-23,147,168,169,174], then the classical (default) ’whole-cell-constant-volume’ (WCCV) kinetic modelling 
can not longer be applied because the regulatory properties of GERM / GRC are related to the cell-volume growth and lot of 
additional constraints derived from the cell holistic properties (e.g. isotonic constraint ensuring the cell membrane integrity). 
To also account for the cell growth , and the cell-holistic constraints, a novel holistic modelling framework of cell processes by 
accounting for the cell variable volume and other constraints was introduced by Maria [24,170], that is the so-called ’whole-
cell-variable-volume’ (WCVV), staring from the analogy with the chemical engineering concepts, that is, more specifically by the 
analogy with the kinetic models of chemical reactions conducted in variable-volume systems [173]. Implications of the novel 
WCVV concept when modelling metabolic cell processes (especially GRC-s) under variable cell-volume were systematically 
studied, compared to the WCCV models [60], positive results extrapolated, and widelly promoted in a large number of applications 
by Maria [21-24,40,60,74,78,175,176,177,178] that is the so-called „whole-cell-variable-volume (WCVV) framework. The next 
chapter is aiming to briefly describe the characteristics of the WCVV approach, while Maria et al. [60] proved the superiority in 
the prediction accuracy offered by the WCVV kinetic modelling framework compared to the classical WCCV.

Generally, living cells are evolutionary, auto-catalytic, self-adjustable structures able to convert raw materials from 
environment into additional copies of themselves. Living cells are hierarchically organized, self-replicating, evolvable, and 
responsive biological systems to environmental stimuli. The structural and functional cell organization, including components 
and reactions, is extremely complex, involving O(103-4) components, O(103-4) transcription factors (TF-s), activators, inhibitors, 
and at least one order of magnitude higher number of (bio)chemical reactions, all ensuring a fast adaptation of the cell to the 
changing environment [21-23]. Relationships between structure, function and regulation in complex cellular networks are 
better understood at a low (component) level rather than at the highest-level [179,180].

Cell regulatory and adaptive properties are based on homeostatic mechanisms, which maintain quasi-constant key-species 
concentrations and output levels, by adjusting the synthesis rates, by switching between alternative substrates, or development 
pathways. Cell regulatory mechanisms include allosteric enzymatic interactions and feedback in gene transcription networks, 
metabolic pathways, signal transduction and other species interactions [181]. In particular, protein synthesis homeostatic 
regulation includes a multi-cascade control of the gene expression with negative feedback loops and allosteric adjustment of 
the enzymatic activity [21-23,182]. 

The in-silico re-design of the cell metabolism is an up-to-date subject in Synthetic Biology. But in this effort, Synthetic Biology 
is closely assisted by the Systems Biology focus on the cell organization, the former being one of the main tools in the in-silico 
design of genetically modified micro-organisms (GMO) with desired characteristics, and with applications in medicine, such 
as therapy of diseases (gene therapy), production of new devices based on cell-cell communicators, biosensors, production of 
vaccines, etc. The Systems Biology aims at understanding the dynamic interaction between components of a living system or 
between living systems. (http://www.erasysbio.net/). To realize these ambitious objectives, Systems Biology uses a wide range 
of tools, but mainly complex mathematical simulation models linked to –omics databanks [21-23].

http://www.erasysbio.net/
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In this context, the adequate modelling of the genetic regulatory circuits (GRC), made from linked GERM-s, together with 
modelling the cell central carbon metabolism (CCM) remain subjects of tremendous importance on which researches have 
been focus over the last decades, as long as GRC-s are the essential metabolic components used to re-design the whole cell 
metabolism, and in regulating the whole cell syntheses [21]. GRC-s, also denominated as ’genetic regulatory networks’ GRN-s, 
is a combination of GERM-s ensuring some functions into the cell. Due to the gene location in the GRC nodes, a more sophisticated 
definition was given by Das et al. [183], by using the graph-theory:

In fact, any lumped representation of a GERM, or a GRC should include, in one form or another, the main ’actors’ of such 
regulatory circuits, that is: metabolites (Met*) as substrates for genes and protein synthesis, genes (G*) encoding proteins (P*), 
as depicted in (Figure 4-10). This is a very simplified representation of the biochemistry in living cells (hiding hundreds of 
enzymatic reactions) conceptually decomposed in three ‘spaces’. Influences between gene activities, without explicitly accounting 
for the proteins and metabolites, result from a projection of all regulatory processes on the ‘gene space’ [137]. 

A central part of any CCM model concerns self-regulation of the metabolic processes via protein (enzymes) synthesis in 
GERM-s. Consequently, one particular application of the dynamic deterministic cell models is the study of GRC-s, in order to 
predict ways by which biological systems respond to signals, or environmental perturbations. The emergent field of such efforts 
is the so-called ‘gene circuit engineering’ and a large number of examples have been reported with in-silico re-creation / design 
of GRC-s conferring new properties/functions to the mutant cells (i.e. desired ‘motifs’ in response to external stimuli) [21,184]. 
Such an effort is facilitated by the use of GERM simulation models [21,24,185]. As mentioned by the pioneers of this field, 
with the aid of recombinant DNA technology, it has become possible to introduce specific changes in the cellular genome. This 
enables the directed improvement of certain properties of microorganisms, such as the productivity, which is referred to as 
Metabolic Engineering [186-188]. This is potentially a great improvement compared to earlier random mutagenesis techniques, 
but requires that the targets for modification are known. The complexity of pathway interaction and allosteric regulation 
limits the success of intuition-based approaches, which often only take an isolated part of the complete system into account. 
Mathematical models are required to evaluate the effects of changed enzyme levels or properties on the system as a whole, using 
metabolic control analysis or a dynamic sensitivity analysis [26]. In this context, GERM and GRC dynamic models are powerful 
tools in developing re-design strategies of modifying genome and gene expression seeking for new properties of the mutant 
cells in response to external stimuli [21-23]. Examples of such GRC modulated functions include: toggle-switches, hysteretic 
GRC behaviour, GRC oscillator, specific treatment of external signals, GRC signalling circuits and cell-cell communicators 
[107]. The development of dynamic models on a deterministic basis to adequately simulate   in detail  the cell metabolism self-
regulation, cell growth, and replication for such an astronomical cell metabolism complexity is practical impossible due to lack of 
structured information and computational limitations. A review of some trials was presented by Styczynski and Stephanopoulos 
[20]. In spite of such tremendous modelling difficulties, development of reduced dynamic models to adequately reproduce 
the cell complex syntheses related to the CCM [20,25,26], but also the GRC tightly controlling the metabolic processes [107] 
reported significant progresses over the last decades in spite of the lack of structured experimental kinetic information. Even 
of being rather based on sparse information from various sources, and on unconventional identification / lumping algorithms 
[21,24,29,64], such structured deterministic kinetic models have been proved to be extremely useful for in-silico design of novel 
GRC-s [21-23,147,168,169,178,184].

Examples of such GRC modulated functions include [21,107,174,189]:

a)	 toggle-switch, i.e. mutual repression control in two gene expression modules, and creation of decision-making branch 
points between on/off states according to the presence of certain inducers (Figure 4-5);
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b)	 hysteretic  GRC  behaviour , that is a bio-device able to behave in a history dependent fashion, in accordance to the 
presence of a certain inducer in the environment;

c)	 GRC  oscillator  producing regular fluctuations in network elements and reporter proteins, and making the GRC to 
evolve among two or several quasisteady-states;

d)	 external signals treatment by controlled expression such as amplitude filters, noise filters or signal / stimuli amplifiers;

e)	   GRC  	signalling circuits   and cell-cell communicators, acting as ‘programmable’ memory units. [23]

As discussed by Maria [21-24,60,74], the classical (default) modelling tools of metabolic cell processes are based on the 
’Constant Volume Whole-Cell’ (WCCV) continuous variable ODE dynamic models which, do not explicitly consider the cell 
volume exponential increase during the cell growth. As proved by Maria [60], such an approach may lead to biased and distorted 
conclusions on the GERM’s performances, thus making difficult the modular constructions of GRC-s by linking individual 
GERM-s. By contrast, the holistic ’whole-cell of variable-volume’ (WCVV) modelling framework introduced, extended, and 
widelly promoted by Maria [21-24,40,60,74,78,175,176,177,178] has been proved to be more realistic and robust, by explicitly 
including in the model relationships the cell-volume growth, with preserving the cell-osmotic pressure (that is the cell membrane 
integrity). The added isotonicity constraint by Maria [21-24,170] was proved to be essential for predicting more adequate 
performance regulatory indices of GERM-s and GRC-s.”

The  WCVV  vs.  WCCV  when modelling the GRC dynamics in living cells
This chapter is aiming to exemplify, in a simple way, the importance of using a WCVV modelling framework compared to the 

classical (default) WCCV models when simulating some regulatory properties of GERM-s or GRC-s, by explicitly accounting for 
the cell-volume growth, and system thermodynamic isotonicity (constant osmotic pressure). Exemplification is made for the 
case of a simple generic GERM model with characteristics taken form E. coli cells [24,95,174-176,190,191], by mimicking the cell 
homeostasis and its response to dynamic perturbations. This work subject importance is very high, as long as a large number of 
cell simulators are developed and used for practical applications in the biosynthesis industry, and in medicine. The isotonicity 
constraint is proving to be a natural way to preserve the homeostatic properties of the cell system [21-24,60,78], instead of 
imposing others constraints, such as ’the total enzyme activity’ and ‚total enzyme concentration’ constraints [73,110].

A comparison of model prediction quality in the case of a GERM of [G(P)1] type (Figure 4-7, and Figure 4-9) modelled under 
WCCV or WCVV, clearly indicate that WCCV can lead to biased and distorted conclusions on GERM regulatory performances 
(under both stationary or as response to dynamic pulse-like perturbations), thus making difficult the modular construction of 
GRC-s by linking individual GERM-s (Figure 4-12, and Figure 4-13) [60,175,179].

WCCV formulation
For a system of chemical or biochemical reactions conducted in a cellular closed volume ’V’ (assumed an open system of 

uniform content), the classical (default) formulation of the corresponding (bio)chemical kinetic model based on continuous 
variables (concentration vector ’C’, or number of moles vector ’n’) implies writing an ODE mass balance including the considered 
system states (biological/chemical species index ’j’, taken individual or lumped), in the following WCCV formulation (with 
referring to the whole system volume):
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The above formulation assumes a homogeneous constant volume with no inner gradients or species diffusion 
resistance into the cell. When continuous variable ODE dynamic models are used to model cell enzymatic/metabolic 
processes, the default-modelling framework Eq. (1A-B) is that of a constant volume and, implicitly, of a constant osmotic 
pressure (pi) in isothermal systems, according to the assumed fulfilled Pfeffer’s law in diluted solutions (i.e. the cytosol 
system) [24,113,170]:

                                                 (2)
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Eventually some WCCV models, accounts for the cell-growing rate as a pseudo-‘decay’ rate of key-species (often lumped 
with the degrading rate) in a socalled ‘diluting’ rate (denoted here by an average   see below for its significance). In fact, 
by ignoring the direct influence of the cell volume increase, the WCCV dynamic model cannot ensure the system isotonicity 
constraint fulfilment because the sum of species number of moles doubles over the cell cycle. Such a WCCV dynamic model 
might be satisfactory for modelling many cell subsystems, but not for an accurate modelling of cell regulatory / metabolic 
processes under perturbed conditions, or for division of cells [113], distorting the prediction quality, as reviewed by Maria [21-
24,60,175,176]. Other researchers [110] tried to preserve the homeostatic properties of the cell system, not by imposing the 
isotonic constraint Eq. (2), but ’the total enzyme activity’ and ’total enzyme concentration’ constraints (see [73]).”

WCVV formulation
At this point, it is to strongly emphasize that living cells are systems of variable volume. They double their volume during 

the cell cycle. For chemical or biochemical systems of variable-volume, another formulation is more appropriate, being given 
by Aris [173], and later developed and promoted by Maria [21-24,170] in modelling cell subsystems by also including the cell 
isotonicity constraint in the so-called WCVV modelling framework [21-24,40,60,74,78,175,176,177,178]. In mathematical 
terms, the species mass balance Eq.(1) should be re-written in the following form:

   (3A) 

Where: C = cell pecies concentration vector; t = time; k = model constants; ’s’ index = at steady-state; h = cell kinetic model 
functions. Also:

                                                                                                                                             (3B)

Here, it is to remark two possibilities to calculate the cell dilution ’D’

necessary for solving the model Eq. (3A). The simplest, but not the accurate one, is to use a value averaged over the cell cycle, 
that is:

 (4A)

By accounting the cell double volume at the end of the cell-cycle, then  can be a-priori evaluated by using the following 
relationship (for cells of known cell cycle tc):

 (4B)

The second alternative to evaluate the cell dilution ’D’ is those to impose a constraint accounting for the cell-volume growth 
while preserving a constant osmotic pressure and membrane integrity. Thus, by derivation of the Pfeffer’s law Eq. (2) in respect 
to V, and by division to V, one obtains the ’isotonic’ dilution rate  [21,24,60]:   

(5)

It is to observe in Eq. (5) that the cell content dilution rate Di is linked to the all species (taken individually or lumped) reaction rates 
via the isotonicity constraint. As species reaction rates varies during the cell cycle, it clearly results that formulation Eq. (5) offers a 
more accurate estimation of the (variable) cell dilution at any time. Such a system isotonicity constraint is more ’natural’ and eventually 
includes ‚the total enzyme activity’ and ’total enzyme concentration’ constraints suggested by Komasilovs et al. [110].
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In the above relationships eqns.(2, 5), the following notations have been used: T = absolute temperature, R = universal gas 
constant, V = cell (cytosol) volume. As revealed by the Pfeffer’s law eqn.(2) in diluted solutions [192], and by the eq.(5), the 
volume dynamics is directly linked to the molecular species dynamics under isotonic and isothermal conditions. Consequently, 
the cell dilution ’D’  results as a sum of reacting rates of all cell species (individual or lumped). The ( RT/ π ) term can be easily 
deducted in an isotonic cell system, from the fulfilment of the following invariance relationship derived from eqn.(2):

      

                                                                                                                                                                                      (6)                       

The basic hypotheses of the WCVV dynamic models of type Eqs. (3-6) are briefly presented in the (Table 4-1), and in the 
below sub-paragraph. These formulations are valid over ca. 80% of the cell cycle representing the balanced cell growth before 
its division [113].”

WCVV  deterministic model hypotheses 

”Life at its simplest level involves two major divisions of interacting molecular species called the cell and the environment. 
The environment consists of molecules dissolved in water and largely separated from the cell. In their simplest form, cells consist 
of hydrophilic molecules in aqueous volumes (cystosol), encapsulated by semi-permeable hydrophobic membranes composed of 
phospholipids and proteins. 

Cellular components interact to catalyze the synthesis of more cells from environmental components called nutrients. 
Imported into the cell and transformed in metabolites. This autocatalytic process is specified by the following overall reaction:

                                          

As long as excess nutrients are available, this autocatalysis causes cell populations to increase exponentially. The volume of a 
newborn cell doubles during its cell cycle. Cells contain nucleic acids (DNA, RNA, or both) and proteins, interrelated through the 
processes of transcription, translation and DNA replication. Taken together, these metabolic processes are mutually autocatalytic, 
as shown in the following overall schemes:

 

DNA and protein are co-catalysts for RNA synthesis from ribonucleotides. RNA and protein are co-catalysts for the synthesis 
of proteins from amino acids. DNA, RNA, and proteins are co-catalysts for the synthesis of DNA from deoxyribonucleotides. The 
substrates for these processes (deoxyribonucleotides, nucleotides, amino acids etc.) are metabolites, synthesized from imported 
environmental nutrients through complex metabolic pathways [193].    

The whole chemical/biochemical cell processes are called ’cell metabolism’, defined as: Metabolism is the set of life-sustaining 
chemical transformations within the cells of living organisms. The three main purposes of metabolism are the conversion of 
food/fuel to energy to run cellular processes, the conversion of food/fuel to building blocks for proteins, lipids, nucleic acids, and 
some carbohydrates, and the elimination of nitrogenous wastes. These enzyme-catalyzed reactions allow organisms to grow and 
reproduce, maintain their structures, and respond to their environments [193].

The basic equations and hypotheses of a deterministic WCVV simplified cell model (with continuous variables) presented in 
this work, also called a ’mechanical cell’ , are the followings [21-24,60] (Figure 4-11):   

a)	 The cell system consists in a sum of hierarchically organized components, e.g. metabolites, genes DNA, proteins, RNA, 
intermediates, etc. (interrelated through transcription, translation and DNA replication and other processes); the cell is separated 
from the environment (containing nutrients) by a membrane.
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b)	 The membrane, of negligible volume, presents a negligible resistance to nutrient diffusion; the membrane dynamics 
being neglected in the cell model, being assumed to follow the cell growing dynamics. The cell is placed in an environment with 
which it interacts through a semi-permeable membrane.

c)	 Changing nutrient levels in the environment. Genes (generically denoted by G), and proteins (generically denoted by 
P) are in a mutually autocatalytic relationship. Variable cell volume and constant osmotic pressure. Regulatory mechanisms to 
achieve internal homeostasis to be further explained and detailed (chap. 4.2, 4.3, 4.4, 4.5).

d)	 The cell is an isothermal system with an uniform content (perfectly mixed case); species behave ideally, and present 
uniform concentrations within cell. The cell system is not only homogeneous but also isotonic (constant osmotic pressure), with 
no inner gradients or species diffusion resistance.

e)	  The cell is an open system interacting with the environment through a semi-permeable membrane.

f)	 To better reproduce the GERM properties interconnected with the rest of the cell, the other cell species are lumped 
together in the so-called ’cell ballast’ [21-24,175,176].   

g)	 The inner osmotic pressure (π cyt) is constant, and all time equal with the environmental pressure (pi), thus 
ensuring the membrane integrity (π cyt = π env = constant). As a consequence, the isotonic osmolarity under isothermal 
conditions leads to the equality RT/π cyt = RT/π env. Otherwise, the osmosis will eventually lead to an equal osmotic pressure 
(π cyt = π env). Even if, in a real cell, such equality is approximately fulfilled due to perturbations and transport gradients, and 
in spite of migrating nutrients from environment into the cell, the overall environment concentration is considered to remain 
unchanged. On the other hand, species inside the cell transform the nutrients into metabolites and react to make more cell 
components. In turn, increased amounts of polymerases are then used to import increasing amounts of nutrients. The net result 
is an exponential increase of cellular components in time, which translates, through isotonic osmolarity assumption, into an 
exponential increase in volume with time [ V = Vo exp(+Ds·t)] [21-24,60,175,176]. 

h)	 The cell content reports a continuous dilution, that is a species concentration decline due to the continuous increase 
of the denominator of the expression Cj = nj(t)/V(t). In spite of that, concentrations of key species remain constant because the 
numerator (copynumbers) increases at the same rate with the denominator. So, the overall concentration of cellular components 
is time-invariant at the homeostasis.

i)	 Species concentrations at the cell level are usually expressed in nanomoles, being computed with the relationship of 
equation 7:

     (7)

j)	 where NA is the Avogadro number. For instance, for an E. coli cell with an approximate volume of Vcyt,0 = 1.66 10-15  L 
[191], concentration of one generic gene G copynumber is: [G]s = (1/(6.022×1023)(1.66×10-15) = 1 nM (that is 10-9 mol/L). 

k)	 Cell volume doubles over the cell cycle period (tc), with an average logarithmic growing rate of D = ln(2)/tc [ resulted 
from Integrating the definition, D = d(ln(V))/dt , in eq.(5) ]. Under stationary growing conditions, that is a constant D over the 
cell cycle.

l)	 Integration of this relationship indicates an exponential increase of the cell volume, that is [ V = Vo exp(+Ds·t)].

m)	 Under stationary growing conditions, species synthesis rates (rj) must equal to first-order dilution rates (Ds Cj,s), leading 
to time-invariant (index ’s’) species concentrations Cj,s , i.e. the homeostatic conditions (corresponding to a balanced steady-state 
growth). Under QSS cell growing conditions, the ODE model mass balance eq. (3A) is leading to the following nonlinear algebraic 
mass balance set:

                                                                   (8)
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n)	 j = 1,…, ns (no. of species). This QSS mass balance eq.(8) is used to estimate the rate constants ’k’ from the known (from 
experiments) stationary species concentration vector Cs, with also imposing some optimal properties of the cell system. Some 
examples are given by [1,2,21-24,40,60,78,107,174-176,189,194].

o)	 It is to observe that, in a continuous variable metabolic kinetic model, species concentrations can present fractional 
values. When treated deterministically, fractional copy numbers must be loosely interpreted either as time-invariant averages in 
a population of cells or as a time-dependent average of single cells. For other types of cell kinetic models see the review of Maria 
[21,23].

p)	 A metabolic kinetic model in a WCVV approach should be written in the form eq. (3-6). In such a formulation, all cell 
species should be considered (individually or lumped), because all species net reaction rates contribute to the cell volume 
increase (eq. (6)). As the cell volume is doubling during the cell cycle, this continuous volume variation cannot be neglected.

The simplest representation of the core of such a   ’ mechanical cell’  is shown in (Figure 4-12-down-right). It exists in an 
environment consisting of two nutrients NutG and NutP. The cell contains one gene (lumped genome), and protein (lumped 
proteome) [40] in a mutually autocatalytic relationship, two lumped metabolites (MetG and MetP) used in the synthesis of the 
G/P pair, and various regulatory elements promoting internal homeostasis. A membrane is presumed to demarcate the cell from 
its environment but is not an explicit component of the system.”

Advantages of using the WCVV kinetic modelling framework in living cells
As another observation, ”from eqn. (5) it results that the cell dilution is a complex function D(C,k) being characteristic to each 

cell and its environmental conditions.

Relationships (5-6) are important constraints imposed to the WCVV cell model (3A-B), eventually leading to different 
simulation results compared to the WCCV kinetic models that neglect the cell volume growth and isotonic effects (see some 
examples given by Maria [21-24,60,175,176]). On the contrary, application of the default classical WCCV-ODE kinetic models of 
eqns. (1A-B) type with neglecting the isotonicity constraints presents a large number of inconveniences, related to ignoring lots 
of cell properties (discussed in detail in [21-24,60,175,176]), that is:

a)	 the influence of the cell ballast in smoothing the homeostasis perturbations;

b)	 the secondary perturbations transmitted via cell volume following a primary perturbation;

c)	 the more realistic evaluation of GERM-s regulatory performance indices ( P.I.-s, see below chap. 4.4);

d)	 the more realistic evaluation of the recovering/transient times after perturbations;

e)	 loss of the intrinsic model stability;

f)	 loss of the self-regulatory properties after a dynamic perturbation, etc.

 ”When applied to model GRC-s (see chap. 4.3, 4.4, and 5), the WCVV modelling hypotheses described in (Table 4-1) must 
include some constrains refering to the optimality of cell metabolic processes,that is:

a)	 Reaction rates must be maximal, but with rate constants limited by the diffusional processes; 

b)	 The total enzyme (proteine) content of the cell is limited by the isotonicity condition (i.e. constant osmotic pressure 
under Pfeiffers’law for diluted solutions, eq. 2); 

c)	 As a corollary of the above constraint, the species differential mass balances must be written under the variable cell 
volume constraint (eq.3A-B);

d)	 Also the total cell energy (ATP) and reducing agent (NADH) resources are limited (see for instance the HSMDM model 
of chap. 6);

e)	 The reaction intermediate level must be minimum; The cell model at homeostasis must be stable, that is will reach the 
steady-state after termination of a perturbation, see [21-24,60,73,78]. 

f)	 In math terms, for an ODE cell model, of the form eqn.(3A-B), the above cell model stability constraint at homeostasis 
translates in the condition that the real part of all ( )iλ  (i) must be negative, that is: Re( ( )iλ  (i))<0 for all ’i’. Here, the 
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eigenvalues ( )iλ  (i) of the Jacobian matrix   are evaluated at a checked quasi-steady-state (QSS) of cell species 
concentrations (Cs). The Jacobian matrix elements refers to the WCVV model eq.(3A), that is: J(i,k) = ∂  h(i)(C,k) / ∂ C(k). where 
h(i) are the right-side functions of the ODE cell kinetic model eqn.(3A-B), detailed as:

g)	

 (9)

where notations are the followings: C(j) = (cell-)species j concentration; V = system (cell cytosol) volume; n(j) = species j 
number of moles; r(j) = j-th reaction rate; s(i,j) = stoichiometric coefficient of the species ’j’ (individual or lumped) in the ’i’-th 
reaction; t = time; k = rate constant vector; i =1,…,nr (no. of reactions).

i)	 It is self-understood that, as Max(Re(λ  (i)))<0 is smaller as this cell QSS is more stable.

ii)	 The key-species concentrations must be constant at QSS (homeostasis).

In fact, the cell metabolism optimality derives from the requirement to get a maximum growth / quick replication over a 
defined / limited cell cycle, by using minimum resources from the environment. These requirements are better illustrated  by 
the 5 main characteristics of the cell systems, below underlined in the outline 4-1.

Amazing, but the first pioneers in dynamic modelling of biological systems were not the (bio)chemical engineers which 
are better trained in ‘translating’ from the ‘language’ of molecular biology to that of mechanistic (bio)chemistry, by preserving 
the structural hierarchy and component functions. The first dynamic models of some cell processes have been reported by 
the electronists [195,196]. Later, such ‘electronic circuits-like’ models have been extensively used to understand intermediate 
levels of regulation [103], but they failed to reproduce in detail molecular interactions with slow and continuous responses to 
perturbations and, eventually, they have been abandoned. However, the electronists underlined the main characteristics of the 
cell systems, which must be included in any simulation model (Figure 4-20, and Outline 4-1): 

Outline 4-1.  The main characteristics of the cell systems.

a)	 The dynamic character of species interactions and processes [140].

b)	 The feedback/feedforward character of processes ensuring their selfregulation [197].                                                                                     

c)	 Optimal regulation of cell syntheses with fastest reaction rates, smallest amounts of intermediates, and best P.I.-s 
(chap. 4.4) [140], with (d),

d)	 Consuming minimum  of resources  (nutrients/substrates), and cell energy

(ATP, NADH, etc.),  but with (e),

e)	 Ensuring maximum reaction rates [73].

All these cell metabolic characteristics will be accounted in all the subsequent cell in-silico WCVV simulators based on 
extended/reduced mathematical models. All these characteristics are in fully agreement to the Darwin theory “Living organisms 
have evolved to maximize their chances for survival”. It explains structures, behaviors of living organisms. (Figure 4-21). From 
such very incipient efforts to model-based design GMO-s, 40 years latter [196] pointed-out the tremendous advanced in the 
Systems Biology and in-silico design of GMO-s, or even tissues, by means of computational systems biology [198,199].

A review of mathematical model types (including the WCVV models) used to describe metabolic processes is presented by 
[20-24,188]. Each model type presents advantages but also limitations. Roughly, to model the complex metabolic regulatory 
mechanisms at a molecular level, two main approaches have been developed over decades: a structure-oriented (topological) 
analysis, and the dynamic (kinetic) models [21-23,179,200]. Each theory presents strengths and shortcomings in providing an 
integrated predictive description of the cellular regulatory network, as briefly reviewed by Maria [21-24] .
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Structure-oriented analyses or topological models ignore some mechanistic details and the process kinetics, and use the 
only network topology to quantitatively characterize to what extent the metabolic reactions determine the fluxes and metabolic 
concentrations [73]. The so-called ‘metabolic control analysis’ (MCA) is focus on using various types of sensitivity coefficients 
(the so-called ‘response coefficients’), which are quantitative measures of how much a perturbation (an influential variable) 
affects the cell-system states [e.g. reaction rates, metabolic fluxes (stationary reaction rates), species concentrations] around the 
steady-state (QSS). The systemic response of fluxes or concentrations to perturbation parameters (i.e. the ‘control coefficients’), 
or of reaction rates to perturbations (i.e. the ‘elasticity coefficients’) have to fulfil the ‘summation theorems’, which reflect the 
network structural properties, and the ‘connectivity theorems’ related to the properties of single enzymes in connection to the 
system behaviour.

MCA methods are able to efficiently characterize the metabolic network robustness and functionality, linked with the cell 
phenotype and gene regulation. MCA allows a rapid evaluation of the system response to perturbations (especially of the 
enzymatic activity), possibilities of control and self-regulation for the whole path or some subunits. Functional subunits are 
metabolic subsystems, called ‘modules’, such as amino acid or protein synthesis, protein degradation, mitochondria metabolic 
path, etc. [182]. Because the living cells are self-evolutionary systems, new reactions recruited by cells together with enzyme 
adaptations can lead to an increase in the cell biological organisation and to optimal performance indices. When constructing 
methods to optimize evolutionary metabolic systems, MCA concepts and appropriate performance criteria have been used, 
leading to: maximize reaction rates and steady-state fluxes; minimize metabolic intermediate concentrations; minimize transient 
times; optimise the reaction stoichiometry (network topology); maximize thermodynamic efficiency. All these objectives are 
subjected to various mass balance, thermodynamic, and biological constraints [73]. However, by not accounting for the system 
dynamics, and grounding the analysis on the linear system theory, topological methods presents inherent limitations (see for 
instance some violations of stoichiometric constraints discussed by Atauri et al. [201], or the use of modified control coefficients 
[202]. 

From the mathematical point of view, various structured (mechanism-based) dynamic models have been proposed to 
simulate the metabolic processes and their regulation, accounting for continuous, discrete, and/or stochastic variables, in a 
modular construction, ‘circuit-like’ network, or compartmented simulation platforms [24,181,200]. Briefly, the math models 
used by Systems Biology are of the following types [21-24]

a)	 Deterministic continuous  variable  dynamic models can perfectly represent the cell response to continuous perturbations, 
and their structure and size can be easily adapted based on the available  bio-  omics  information [21-24,73,108,188,200]. 
Deterministic continuous variable kinetic models present a large number of advantages, as previously mentioned. Besides, it 
is to underlined the huge advantages coming from the used concepts, rules, and algorithms of (Bio)chemical engineering and 
nonlinear system control theory, as discussed by [21-23,60,74,177,178], and briefly represented in (Figure 4-2, and Figure 4-3), 
and by issues (a-j) at the end of chap. 4.1. 

Classical approach to develop deterministic dynamic models is based on a hypothetical reaction mechanism, kinetic equations, 
and known stoichiometry. This route meets difficulties when the analysis is expanded to large-scale metabolic networks of the 
CCM (Figure 4-23) because the necessary mechanistic details and standard kinetic data to derive the rate constants are difficult 
to be obtained. However, advances in genomics, transcriptomics, proteomics, and metabolomics, lead to a continuous expansion 
of bioinformatic databases, while advanced numerical techniques, non-conventional estimation procedures, and massive 
software platforms reported progresses in formulating such reliable cell models. Valuable structured dynamic models, based on 
cell biochemical mechanisms, have been developed for simulating various (sub)systems [21-24]. 

Boolean (discrete) variable models.  Such models works with a topological structures of the GRC-s. An  example is displayed 
in (Figure 4-22, and Figure 4-5) [180,200]. Due to the very large number of statesO(103 –104), and O(103) of transcriptional 
factors (TF) involved in the gene expression, such GRC models are organized in clusters, modules, of a multi-layer structures 
(Figure 4-22) [77,200].

In the Boolean modelling approach, variables can take only discrete values (usually 0, and 1). Even if less realistic, such 
an approach is computationally tractable, involving networks of genes that are either ’on’(1), or ’off ’(0) (e.g. a gene is either 
fully expressed or not expressed at all; Figure 4-22) according to simple Boolean relationships, in a finite space. Such a coarse 
representation is used to obtain a first model for a complex bio-system including a large number of components, until more 
detailed data on process dynamics become available. ‘Electronic circuits’ structures (see an example in (Figure 4-24), from 
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[103,104]) have been extensively used to understand intermediate levels of regulation, but they cannot reproduce in detail 
molecular interactions with slow and continuous responses to perturbations, and they offer any information on the process / 
species concentration dynamics.

b)	 Stochastic variable models [91,203,204]. Stochastic models replace the ‘average’ solution of continuous-variable 
(deterministic) ODE kinetics (e.g. species concentrations) by a detailed random-based simulator accounting for the exact number 
of molecules present in the system. Because the small number of molecules for a certain species (present in traces in a cell) it 
is more sensitive to stochasticity of a metabolic process than the species present in larger amounts, simulation via continuous 
models sometimes can lack of enough accuracy for random process representation (as cell signalling, gene mutation, etc.). Monte 
Carlo simulators are used to predict individual species molecular interactions, while rate equations are replaced by individual 
reaction probabilities, and the model output is stochastic in nature. Even if the required computational effort is extremely high, 
stochastic representation can be useful sometime to simulate the cell system dynamics by accounting for a large number of 
species of which spatial location is important, or for a large distribution of concentrations [91,203,204] (Figure 4-24).

c)	 Mixed variable models [149,150,200]. Such models try to take advantages from each of the model type (a-c) above 
mentioned.

The multiple advantages of the WCVV modelling framework are discussed, and exemplified by Maria [21-24,60,74,107,175,176]. 
In short, the novel modelling concept/framework WCVV proposed, extrapolated, and widelly promoted in a large number of 
applications by Maria [21-24,40,60,74,78,170,175,176,177,178] to derive cell kinetic models, in a holistic approach, ensures cell 
processes homeostasis, and the individual/holistic GRC regulatory properties, by including in a natural way constraints related 
to the cell system isotonicity, and the variable-volume in relationship to the species reaction rates, and the lumped proteome/ 
genome replication [21-24,40,60,175,176]. Such an isotonicity constraint is required to ensure the cell membrane integrity, but 
also to preserve the homeostatic properties of the cell system, not by imposing ’the total enzyme activity’, or the ’total enzyme 
concentration’ constraints used by the classical (default) constant-volume cell modelling approach (WCCV). As proved by Maria 
et al.[60], compared to the classical WCCV models, the WCVV novel modelling framework is leading to more accurate simulate of 
cell metabolic effects, such as: relationships between the external conditions, species net synthesis reactions, osmotic pressure, 
cell content (ballast) influence on smoothing the continuous perturbations in external nutrient concentrations, the more realitic 
representation of GERM regulatory modules, etc.

Besides, as shortly presented in the (Table 4-2) the WCVV holistic modelling framework proposed, extrapolated, and widelly 
promoted in a large number of applications in bioengineering and bioinformatics by Maria [21-24,40,60,74,78,170,175,176,177,178] 
is proved to be more accurate and present a large number of advantages.

Table 4-2. Some advantages when using the holistic WCVV framework when modelling GRC-s [21-24,175,176].

 
Lumping deterministic kinetic models

”To not complicate too much the WCVV dynamic model (Figure 4-14), usually a reduction in the number of cell species and 
reactions by common lumping rules of (bio)chemical engineering [29,64,67,78] is usually performed. Such a model reduction 
strategy of the metabolic kinetic models present a series of disadvantages, such as: (a) a loss in model adequacy; (b) a loss 
in the simulated system flexibility (due to the reduced number of considered intermediates and species interactions); (c) an 
increased possibility to get multiple (rival) reduced models of proximate characteristics for the same cell system, difficult to be 
delimited; (d) a loss in the model prediction capabilities; (e) lumped model parameters can lack of physical meaning; (f) a loss / 
alteration of systemic / holistic properties (e.g. cell system stability, multiplicity, sensitivity, regulatory characteristics). In spite 
of that, lumped deterministic models can successfully simulate a broad range of metabolic processes [21-24]. The (Figure 4-19) 
summarizes the main reasons to reduce an extended cell kinetic model.

To avoid large deterministic models, difficult to be identified (due to the lack of experimental structured kinetic information), 
and difficult to be used, a lumping procedure should be applied (Figure 4-15). 

Reduction in the model structure (via lumping of species, and/or reactions) is necessary due to the followind reasons [21-24, 
29,64,67,78] 
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a)	 the high complexity of cell metabolic processes vs. available data

b)	 large number of species, reactions, transport parameters, and interactions

c)	 low data observability & reproducibility

d)	 metabolic process variability 

e)	 interpretable representation of cell complexity

f)	 requirement to get quick simulations of cell behavior under various environmental conditions

g)	 computational tractability and easier application of algorithmic lumping rules of extended kinetic models imported 
from the (bio)chemical engineering numerical rules, and from the nonlinear systems numerical treatment.   

However, a tradeoff between model complexity and adequacy must be maintained [29,78], when such models are used for 
the in-silico design of GMO-s, by in-silico re-programming the cell metabolism [3,12,42,205,] or by optimal cell cloning [1,2,40]. 
Application of systematic math-lumping rules to metabolic processes must account for physical significance of lumps, species 
interactions, and must preserve the systemic/ holistic properties of the metabolic pathway. The only separation of components 
and reactions based on the time-constant scale (as in the modal analysis of the Jacobian of the ODE model has been proved to 
be insufficient [206]. The ODE model Jacobian matrix is defined as the derivatives of model functions in respect to model state-
variables, that is species concentrations the in cell metabolic models; see its calculation relationships before eq.(9)] 

This classic approach to develop dynamic reduced models is based on the biochemical reaction engineering rules, that is: 
propose a hypothetical reaction mechanism, formulate kinetic equations, and reaction stoichiometry, and try to validate them 
on an experimental basis. This route meets difficulties when the analysis is expanded to large-scale metabolic networks, because 
the necessary mechanistic details and standard structured kinetic data to derive the rate constants are difficult to be obtained. 
However, advances in genomics, transcriptomics, proteomics, and metabolomics, lead to a continuous expansion of bioinformatic 
databases, while advanced numerical techniques, non-conventional estimation procedures, and massive software platforms, 
and lumping algorithms [24,29,64,78], reported progresses in formulating lumped (reduced) adequate cell dynamic models. 
Valuable  structured   dynamic  models, based on cell biochemical mechanisms, have been developed for simulating various (sub)
systems (see examples of Maria [21-24].

However, here it is to mention, that the work with reduced kinetic models of cell CCM-metabolic syntheses, and of GRC-s, even 
if computationally very convenient, presents some inherent disadvantages, that is: multiple reduced model structures might 
exist difficult to be discriminated; a loss of information is reported on certain species, on some reaction steps, and a loss in 
system flexibility (given by the no. of intermediates and species interactions); a loss in the model prediction capabilities; a lack 
of physical meaning of some model parameters / constants thus limiting its robustness and portability; alteration of some cell / 
GRC holistic properties (stability, multiplicity, sensitivity).  

Here can be mentioned only a few of the classical chemical engineering rules used for reducing an extended kinetic model 
[29,64,67,78](Figure 4-15): 

a)	 Reduce the list of reactions, by eliminating unimportant side-reactions and/or assuming quasi-equilibrium for some 
reaction steps; use sensitivity measures of rate constants to detect the redundant part of the model (e.g. ridge selection, principal 
component analysis, time-scale separation, etc.)

b)	 Reduce the list of species, by eliminating unimportant components and/or lumping some species, by using various 
measures [29,207], e.g. small values for the product of the target ’i’-th species  lifetime LT(i) = -1/J(i,i), and its production rate 
r(i), where the Jacobian matrix elements J(i,i) refers to the WCVV model eq.(3A), that is: J(i,k) = ∂ h(i)(C,k) / ∂ C(k) where h(i) are 
the right-side functions of the extended ODE cell kinetic model eqn.(3A-B), detailed in eqn.(9). Decompose the kinetics into fast 
and slow ‘parts’ allowing application of the quasi-steady-state-approximation (QSSA) to reduce its dimensionality [29,64,67].   

c)	 When the ODE kinetic model is linear in parameters, then the reduction procedure of Maria [29,64,67,78], can be 
successfully applied by preserving the ODE model invariants (that is the eigenvalues and the eigenvectors of the model Jacobian) 
[67].
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d)	 Use of mixed integer NLP estimation rules (MINLP), to concomitantly estimate the rate constants and reduce the ODE 
model structure, by replacing the rate constants [k(j)] with the terms [k(j)*y(j)], where the binary variables y(j) Є [0,1] have 
also to be estimated in order to retain the significant kinetic terms, by eliminating the rate constants corresponding to y(j) = 
0 [29,65]. In such a way, the obtained reduced ODE model will also ensure a satisfactory model adequacy vs. the considered 
experimental data.

e)	 If the model structure is too extended vs. the available information, besides computational methods, various 
experimental techniques can be applied for reducing the structure/size of the ODE  kinetic model [29]. Experimental rules can 
point-out or ’mask’ intermediate species and/or steps. Computational rules imply kinetic model estimation, study of the effect 
of parameter changes on the model solution (sensitivity analysis), and identification of the redundant parts of the model or 
variables [29,64,67,78].

The current trend in kinetic modelling of cell processes is to use more structured and complex strategies, by taking into 
account constraint representation, algorithms for model development and pathways synthesis, by using all types of biological 
information, conventional or not, and assembling suitable reactions and kinetic modules from databanks. Complex software is 
now able to realize integrated platforms for model synthesis, parameter estimation, model reduction and discrimination, by 
using the (bio)chemical engineering concepts and tools [21-23,74]. The modular approach and ’automatic’ generation of ODE, 
differential-algebraic (DAE), or stochastic models, allow simulation of complex chemical systems [208,209,210,211-217] or 
biochemical systems by using modern software such as (MPS, MetaModel, GEPASI, ESSYNS, METASIM, ProMoT/DIVA, BioSpice, 
Cellerator, Dbsolve, Jarnac, StochSim), see the review of Hucka et al. [218].

Oriented and unified programming languages have been developed (CellML of Hedley et al. [172]; SBML of Hucka et al. 
[92,218]) to include the bio-system organization and complexity in integrated platforms for cellular sub-systems simulation. 
These platforms include representation of cells, neurons, bioinformatic sequences, bio-polymer sequences, complex molecular 
structures, gene expression, gene-finding (E-Cell of Tomita et al. [51,52]; V-Cell of Moraru et al. [99], and of Slepchenko et al. 
[53]; M-Cell of Bartol and Stiles [102]; A-Cell of Ichikawa [103,104]. Integrated modelling and simulation platforms tend to use 
a large variety of chemical and biological bio-omics databanks, including physico-chemical properties, species biodegradability 
[219,220], reactions in diluted solutions [221], properties of enzymes, proteins, genes, metabolic reactions, etc. (CRGM-database 
[105]; NIH-database [222]).

Due to the ’modular functional’ organization of the cell, a worthy route to develop reduced models is to base the analysis 
on the concepts of ‘reverse engineering’ and ‘integrative understanding’ of the cell system (review of Maria [78]). Such a rule 
allows disassembling the whole system in parts (model functional modules) and then, by performing tests and applying suitable 
numerical procedures, to define rules that allow recreating the whole and its characteristics by reproducing the real system. 
Such an approach, combined with derivation of lumped modules, allows reducing the model complexity by relating the cell 
response to certain perturbations to the response of few inner regulatory loops instead of the response of thousands of gene 
expression and metabolic circuits. Such a procedure is very suitable for modelling GRC-s by linking GERM models in such a way 
to maintain the cell homeostasis, that is to maintain relatively invariant species concentrations despite perturbations.[21,67]

The math modelling efforts have intensified a lot after 2000 when the human genome has been deciphered (Figure 4-17), 
being proved that the difficult task to model and design complex biological circuits with a building blocks strategy can be 
accomplished by properly defining the cell basic components, functions, and structural organisation (Figure 4-18). Because 
many cell regulatory systems are organized as ’modules’ [223], it is natural to model GRC-s and other metabolic processes by 
using a modular approach [21-24]. Further analyses including engineered GRC-s can lead to simulate and design of GMO-s, of 
desirable characteristics, that is [40,81,107]: a tight control of gene expression, i.e. low-expression in the absence of inducers 
and accelerated expression in the presence of specific external signals; a quick dynamic response and high sensitivity to specific 
inducers; GRC robustness, i.e. a low sensitivity vs. undesired inducers (external noise). Through the combination of induced 
’motifs’ by the modified GRC-s in GMO-s, one may create potent applications in industrial, environmental, and medical fields 
(e.g. biosensors, gene therapy). Valuable implementation tools of the design GRC-s in real cells have been reported over the last 
years [79,184,224].

The WWVC modelling framework will be further exemplified when developing the HSMDM for the case study (no.1). 
including a complex GRC with 7 linked GERM-s of the mer-operon in the E. coli cell.
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By using the WCVV modelling framework, structured reduced dynamic models of various complexity have been developed 
to simulate individual GERMs, [21-24,175,176] but also linked GERM-s in GRC of modulated functions (e.g. toggle-switch, 
amplitude filters, modified operons, etc.), used to design GMOs of practical interest, such as genetic switches [107], or optimally 
in-silico cloned E. coli cells for a better uptake of mercury from waste waters [40].”

Modelling individual GERM-s under WCVV formulation
In order not to overly complicate the HSMDM models that also include GRC-s, it is necessary to have a “library” of kinetic 

models to represent individual GERM-s, to be used for build-up GRC-s of desirable properties (e.g. genetic switches, operon 
expression, etc.). See the case study no. 1 (chap. 5) as an example. Obviously, the selection of the most suitable GERM to be 
included in the GRC chain depends on its regulation performances (that is, the so-called self-regulation performance indices 
(P.I., chap. 4.4), related to the GERM type.

This chapter briefly presents the main GERM-s models proposed by Maria [21-24, 185] used in the construction of HSMDM-s, 
in terms of the reduced reaction scheme, kinetic model, and their associated P.I.-s.

As experimentally proved in the literature (reviews [21-24]), the GRC-s (or GRN-s) „that control the synthesis of all proteins 
(enzymes) in the cell, present a modular construction, every operon (a cluster of genes under the control of a single promoter) 
including a variable number of interacting GERM-s. However, it is wellknown that one GERM interacts with no more than other 
23-25 GERM-s [225], while most of GERM structures are repeatable. Consequently, when developing the GRC analysis and 
reaction schemes / kinetic model, the modular approach is preferred due to several advantages: (i) A separate analysis of the 
constitutive GERM-s in conditions that mimic the stationary or perturbed cell growth; (ii) The GERM modules are then in-silico 
linked to construct the target GRC of an optimized regulatory efficiency that ensures key-species homeostasis and cell network 
holistic properties (Figure 4-16, Figure 4-25, and Figure 4-5). (iii) In-silico investigations of GERM-s and GRC-s characteristics 
focus on the tight control of gene expression, the quick dynamic response, the high sensitivity to specific inducers, and the GRC 
robustness (i.e. a low sensitivity vs. undesired inducers). Such advanced regulatory structures must ensure the homeostasis 
(quasi-stationarity) of the regulated key-species, and quick recovery (with a trajectory of minimum amplitude) after a dynamic 
(impulse-like) or stationary (step-like) perturbation of one of the involved metabolites or nutrients [21-24, 185] (Figure 4-26, 
and Figure 4-27).

To model complex GERM-s, intensive efforts have been invested over the last decades, and various types of dynamic models 
have been proposed, both in a deterministic [20,25,26,107,173,186-188,192], or stochastic approach [78,95,173,192,225]. See 
also the reviews [25,174,190,226] concerning structured deterministic models with using continuous variables, built-up from 
time-series experiments [191,227].

However, to not complicate the resulted simulation model when coupling GERM chains in complex GRC-s, simple GERM 
dynamic models have been proposed and investigated by various researchers [21-24,26,107,187,188,190,223], as displayed in 
(Figure 4-9) , with Hill-type [107,174,189,196], or pseudo-Hilltype [107,174] activation (see Figure 4-4).

To make this rule easier, Maria [21-24] elaborated a library with reduced representations of GERM-s (Figure 4-7) to be used 
for every particular case. Of course, these individual GERM modules differ by the regulatory performance indices (P.I.) to be 
further defined, in response to stationary or dynamic perturbations into the cell, or in the environment.

These simplified deterministic models of lumped GERM and structures have been proved to adequately represent complex 
GRC–s (Figure 4-5, or Figure 5-1). The simplest GERM structure with one regulatory element is those denoted by G(P)1, or of 
better regulatory efficiency G(PP)1 (Figure 4-9). 

The generic [G(P)1] regulatory module (schematically represented in (Figure 4-28-down-right, and Figure 4-7, the row-up) 
refers to the synthesis of a generic protein P and the simultaneous replication of its encoding gene G. The lumped G(P)1 model 
includes only one regulatory element (a so-called “effector”, that is a fast ’buffer’ reversible reaction G + P <===> GP(inactive) 
(Figure 4-7), aiming at controlling the P synthesis rate and its homeostatic QSS level. The following notations have been used: G 
= active part of the gene encoding protein P; GP = inactive part of the gene encoding protein P; MetG, MetP = lumped DNA and 
protein precursor metabolites, respectively.
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In such a generic lumped construction, the protein P and its encoding gene G mutually catalyses the synthesis of each other. 
The protein P is the ’control node’ playing multiple roles in such a simplified lumped representation. Thus, P is a permease 
leading to the import of nutrients NutG, NutP in the cell, but also a metabolase converting the nutrients into precursors MetG 
and MetP of the G and P respectively. Protein P is also a polymerase catalysing the gene replication. And, finally, the protein 
P is also a transcriptional factor (TF) by dynamically adjusting the catalytic activity of the G by means of a very rapid ’buffer’ 
regulatory reaction G + P <===> GP(inactive). When P is produced in excess, it reversible inactivates more amount of G, which 
in turn, will slow-down the P synthesis. When P is produced in too low amounts, the regulatory process goes backwards. 

The module nomenclature used in (Figure 4-7) for such GERM models, proposed by Yang et al. [228], and by Maria [24] 
is those of  (Figure 4-29). It includes the assembled regulatory units . One unit ’i’ is formed by 
the component L(i) (e.g. enzymes or even genes G, P, M, etc.) at which regulatory element acts, and n(i) =0,1,2,… number of 
‘effectors’/TF, generically denoted by species O(i) (that is ‘effectors’ like P, PP, PPPP, R, RR, RRRR, etc ) binding the ‘catalyst’ 
L. For instance, a [G(P)2] unit of (Figure 4-7) includes two successive  binding steps of G with the product P, that is G + P 
<===> GP + P <===>  GPP, all intermediate species GP, GPP, being inactive catalytically, while the mass conservation law is all 
time fulfilled, i.e. 	  Such a representation accounts for the protein concentration diminishment due 
to the cell-growth dilution effect, but could also include protein degradation by proteolysis. It is also to observe that such GERM 
lumped models try to account essential properties of the gene expression, that is a highly self- / cross- regulated and mutually 
catalyzed process by means of the produced enzymes / effectors. As depicted in  (Figure 4-7) for the [G(P)1] module case, the 
protein P synthesis is formally catalysed by its encoding gene G. In turn, P protein formally catalyse the G synthesis, but also 
modulate the G catalyst activity (via the fast buffering reaction G + P <===> GP ).

Even if such a generic [G(P)1] regulatory module is more complex, by including a large number of reactions involved in the 
regulation of the gene expression (schematically represented in Figure 4-29), it was proved (see the case study no. 1 of chap. 
5) to satisfactory  reproduce the dynamics of complex GRC-s in HSMDM models.   As proved by Maria [21-24,78] this simplified 
formulation of GERM-s in (Figure 4-7) implicitly ensures the homeostatic regulation of the gene expression and G/P mutual 
auto-catalysis of their synthesis.

Cells are regulated such that their components are maintained at relatively invariant concentrations despite the presence of 
inherent external/internal perturbations. Recently, the effectiveness of various simplistic regulatory mechanisms in maintaining 
protein homeostasis in the presence of perturbations have been evaluated by [21-24,170,228,229]. Some of these representative 
GERM mechanisms, representatives of which are shown in (Figure 4-49), reflect synthesis (transcription and translation) and 
decay of a generic protein P. Both processes are required to maintain protein [P] concentration at a nominal steadystate [P]ns 
(ns = nominal steady-state).

Protein synthesis involves many components, but in our mechanisms, all except for the generic key-gene G encoding P (and 
in some cases the corresponding mRNA) are ignored and assumed to be present at constant concentrations. In the ’control’ 
mechanism, denoted with  [G(P)0], P is synthesized in a single reaction catalyzed by G (Figure 4-49, mechanism no. 1). In a 
constant-volume WCCV model , [185,229] considered a P degradation by a first-order reaction in P. In real cells, proteins are 
generally stable, and so these fictitious decay terms actually reflect the cell dilution (’D’) caused by volume expansion as cells 
grow, that is eq.(3a-b), eq.(4a-b), eq. (5).

Other mechanisms included negative feedback regulatory elements in various combinations. In mechanism [G(P)1], one P 
binds G reversibly (Figure 449, mechanism no. 2). The resulting GP form is catalytically inactive, and so this relationship serves 
to regulate protein synthesis. The dissociation equilibrium constant is set to equal [P]ns , ensuring that [G]ns = [GP]ns at [P]
ns. Thus, when [P] > [P]ns, then P tends to bind more G and attenuate protein synthesis. Conversely, when [P] < [P]ns, then 
P tends to dissociate from GP, thereby increasing the rate of protein synthesis. This arrangement leads to optimal regulatory 
effectiveness. Mechanism [G(P)1;M(P)1] distinguishes between transcription and translation (Figure 4-49, mechanism no. 3). 
In it, G catalyzes the synthesis of M (i.e. mRNA), and M catalyses the synthesis of P. Also included is the reversible binding of P to 
M, stimulating the degradation of M to form M’. In the mechanism [G(PP)2], two copies of a PP dimer reversibly bind G (Figure 
449, mechanism no. 4), mimicking the binding of transcription factors which often bind promoters as oligomers and in multiple 
copies.

As revealed by (Figure 4-50), the efficiency of all these four (no. 1-4) GERM mechanisms is very good when coping with a 
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dynamic perturbation, that is a 10% negative perturbation (impulse-like) of [P] from [P]ns = 1000 nM, to [P]ns = 900 nM. It is to 
remark that the species recovering trajectories are as faster as the GERM efficiency schema is better, that is in the relative order: 
[G(PP)2] > [G(P)1;M(P)1] > [G(P)1] > [G(P)0] A more detailed discussion on this subject is offered by Maria [21,24,185], by 
highlighting the role of the number of effectors on the GERM P.I.-s (chap.4.4).”

Rate constant estimation in WCVV models of GERM-s and GRC-s

In the WCVV differential models, the large number of rate constants are estimated by using several methods. If the stationary 
cell species concentration vector Cs is known from the experimental data (for the all individual or lumped components considered 
in the kinetic model), then the rate constant vector k (and even unknown Cs) of the kinetic model eq.(3A-B) results by solving the 
nonlinear algebraic set eq.(8), for every cell subsystem (e.g. a GERM or a GRC), by using an effective procedure [29,71,72,239], 
including those of the MapleTM symbolic computing platform. „As the (pi) term is known from the initial condition, and the 
number of model parameters is usually higher than the number of observed cell species, supplementary optimization rules 
can be applied to determine some rate constants, by imposing optimum regulatory criteria (see below P.I.-s [175,176]) for 
the GERM-s, such as minimum recovering time of the stationary concentrations (homeostasis) after a dynamic (‘impulse’-like) 
perturbation in a key-species [24], and using effective solvers [[29,71,72,239]:

 

     (10)

                                                                                                                                                                  

With the following notations: superscript [U^]= estimated value; pτ  = the recovering time of [P]s with a tolerance of 1%[P]

s after applying a 10%[P]s impulse perturbation of the [P]s ; Li (e.g. enzymes or even genes G, P, M, etc.) is a GERM component 
at which regulatory element O, TF, R acts (Figure 4-29). To estimate ,other regulatory global properties can also be used 
together with the constraints eqns. (6,8,10) [24,163]. The reverse reaction rate constants in the rapid buffer reactions of GERM-s, 
of type  G+P   ⇔  GP , are adopted at values five to seven orders of magnitude higher than   D in eq. (3A-B) (see the proof of Maria 
[107]). That is because fast buffering reactions are close to equilibrium and have little effect on metabolic control coefficients. 
As a consequence, rate constants of such rapid reactions are much higher than those of the core synthesis and dilution rates.”

GERM-s regulatory performance indices (P.I.)
”As proved in previous works [21-24], the performances indices (P.I.-s) of GERM–s of [G(P)n] type in (Figure 4-7), are as 

better as the number ’n’ of buffer reactions increases (Figure 4-30). Also, Maria [21-24] proved that when P is acting as a TF, 
its efficiency is better if it is present in a dimeric form (PP), in GERM-s of [G(PP)n] type in (Figure 4-7, and Figure 4-30). 
Maria [21-24] also proved that the GERM regulatory efficiency is better if TF is a dimmer PP acting at both G and M levels 
of the expression (middle and down-rows of Figure 4-7), thus developing a cascade control scheme of the expression where 
transcription and translation regulatory steps are separately considered, that is GERM-s of [G(PP)n;M(PP)n’] type.

It clearly appears (Figure 4-26) that, as the number of effectors increases in GERM-s as their P.I.–s are better. Perturbations of 
the species steady-state (homeostatic) concentrations are caused by environmental processes. In a GERM case, these processes 
tend to increase or decrease the key-protein stationary level [P]s. These processes occur in addition to those of the ‘‘core’’ system 
(G/P pair replication over the cell cycle).

GERM or GRC regulatory performance indices P.I.-s are of two types [2124](Figure 4-31, and Figure 4-32): stationary and 
dynamic. Briefly they are presented in the (Table 4-3), together with the associated optimization objective (goal), for a general 
nonlinear dynamic cell model described by eq. (3A-B). See also an intuitive display in (Figure 4-31, and Figure 4-32) Detailed 
information is given by Maria [21-24]. The monodromy matrix A, necessary to express the species QSS-level stability ’strength’ 
is evaluated together with the cell process ODE model eqn.(3A-B), by using the below differential relationship:

                         (11)
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 Table 4-3  . The regulatory efficiency performance indices P.I.-s proposed to evaluate the perturbation treatment efficiency 
by a generic GERM of (Figure 4-9, or Figure 4-7) type, following the definitions of Maria [24]. Abbreviations: Min = to be 
minimized; Max = to be maximized. Note: k(syn) and k(decline) refer to the P→ →  overall reaction. Notations: ’n’= nominal 
value; ’s’ = stationary value; (*) see eq. (11) and [185] for the monodromy matrix A  calculation; λ  (i) = i-th eigenvalues of 
the Jacobian matrix  defined before eq.(9); A = monodromy matrix, defined by eq. (11); τ (j)= species ’j’ 
recovering time of its QSS-level, with an accepted tolerance (usually 1-5%); Nut= nutrient; Re(λ ) = real part of ’ λ ’; AVG =  
average; STD = standard deviation (st. dev.); Cj = species ’j’ concentration; RD = dynamic regulatory (recovering) index (equivalent 
with the recovering rate after a dynamic perturbation); QSS = quasi-steady-state; P denotes the key-protein expressed in the 
analysed generic GERM;  = the sensitivity of NutP(j) vs- concentration C(i) of species ’i’. Adapted after [23].

In short, explanations of P.I.-s presented in (Table 4-3) are the followings.  A)  Stationary P.I.   are defined as response 
to a stationary perturbation (Figure 4-32), that is transition from a QSS concentration to another QSS following a ’step’-like 
perturbation of one cell component concentration.

Stationary perturbations refer to permanent modifications in the levels of the external nutrients or of the internal metabolites, 
leading to new stationary component concentrations inside the cell. Referring to a target protein P in a generic GERM, the 
regulatory module tends to diminish the deviation ( [P]s-[P]ns ) between the ‘nominal’ QSS (unperturbed set-point, of index 
‘ns’) and the new QSS reached after perturbation (the new setpoint [P]s, see also Figure 4-32). Equivalently, the P-synthesis 
regulatory module will tend to maintain [P]ns within certain limits, [P]min ≤ [P]ns ≤ [P]max. In this respect, a relative Rss = 
±10% maximum deviation has been proposed by [228,229], (see Table 4-3) to get an effective GERM. A measure of the species 
’i’ steady-state concentration (Ci,s) ‘resistance’ to various stationary perturbations { in the rate constants, k(j), or in nutrient 
concentrations, [Nut,j] } is given by the magnitude of the relative sensitivity coefficients at QSS, i.e. S(Ci; kj) and S(Ci,s; [Nut,j]) 
defined in (Table 4-3). In general terms, a system state sensitivity vs. A perturbation is defined (in absolute terms) as S(state; 
perturb.)=   ∂  (state)/   ∂  (perturbation) [231]. Other stationary P.I.-s are discussed by Maria [21-24], that is (Figure 4-32): 

A-i).- Transition time necessary to each GERM component to return to their stationary concentration (QSS) after a step-like 
perturbation in one component of the regulatory module (individual or lumped component; 

A-ii).- Responsiveness to exo/endogeneous signaling species of the analysed GERM or GRC can be represented by the small 
transient times necessary for a species ’j’ QSS-level to reach a new QSS (with a certain tolerance, usually 15%) after applying a 
stationary external stimulus [189]. Consequently, the P.I. measure of the GERM efficiency to move fast to a new QSS is given by 
the duration of the transition time  pτ  (in the case of P-species in Figure 4-32) necessary to a certain component to reach the 
new steady-state concentration.

Another regulatory P.I., that is  (Table 4-3), has been introduced to illustrate the maximum levels 
of (unsynchronized) stationary perturbations in synthesis or consumption rates of a key-species ‘tolerated’ by the cell within 
defined limits [232]. For instance, in the case of the P-species, these rate constants belong to the synthesis and degradation 
lumped reactions:

                                                              

A-iii).- Stationary efficiency. This stationary P.I. is related to the small sensitivities S(C(i); NutP(j)) of the key-species levels 
C(i) vs. changes in the external nutrient levels NutP(j), and is simply denoted by . These sensitivities are computed from 
solving a sensitivity nonlinear algebraic set obtained by assuming QSS conditions eqn. (8) of the ODE kinetic model eqn. (3A-
B), and known nominal species stationary concentrations Cs. Then, differentiation of the steady-state conditions eqn. (8) leads 
to the evaluation of the state sensitivity vs. nutrient levels, i.e. S(C(i); Nut(j)) = ∂  Ci / ∂ Nut(j), (see details of Maria [21-24]).

 A-iv).- The steady-state   C s stability strength . This GERM property is related to the strong capacity of the regulatory 
systems to ‘resist’ to large external / internal perturbations, thus maintaining the system steady-state   C s , and determining very 
quick recovering paths. As with all other   P.I .-s, this GERM property is related to the GERM system characteristics. Basically, as 
Max(Re(λ  (i)))<0 is smaller as this QSS is more stable. Here, the eigenvalues λ  (i) of the Jacobian matrix  (see 
its definition before eqn.(9)) are evaluated at a checked QSS of the species concentration vector (Cs).

In a more systematic approach, the steady-state Cs stability strength. can also be associated to an index against periodic 
oscillations of key-species synthesis. This index can be evaluated from the linearized form of the system model, by calculating the 
monodromy matrix A(T) after a checked period ’T’ of time [185], by using eq.(11). For a stable Cs, i.e.  are smaller, 
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as the stability of the Cs state is stronger and that QSS recovers faster after a small dynamic perturbation. Here, denotes the 
eigenvalues of the

 

A(T) matrix, while I = identity matrix. In other words, QSS stability strength involves: Min(Max(Re(l(i))), with Re(λ  (i)) < 0 
for all ’i’, and  Min .

 B)  Dynamic P.I.  are defined in relation to the GRC response to a dynamic perturbation (Figure 4-32), that is the recover of 
the QSS following an ’impulse’like perturbation in the stationary concentration of one of the cell component.

Dynamic perturbations refer to instantaneous changes in the concentration of one or more cell components that arise from 
a process lasting an infinitesimal time (impulse-like perturbation). After perturbation, the system recovers and returns to its 
stable nominal state QSS (see Figure 4-32, and Figure 4-27 for a generic P-protein case). The computed recovering time  τ
(rec,j ) necessary to each component ’j’ to reach-back their stationary concentration (with a tolerance of 15% proposed by 
Maria, 2005b) may differ from one species to another depending on how effective are their corresponding regulatory circuits.

Recovery rates are properties of all interactions within the system rather than of the individual elements thereof [73]. 
In terms of the evolution and stability of component QSS concentrations included in a dynamic cell system expressed by an 
ODE model (1) or (2), these properties can be evaluated from the analysis of the eigenvalues λ  (i) ( i = no. of species) of the 
linearized kinetic model Jacobian matrix  , of elements J(i,k) = ∂  h(i)(C,k) / ∂  C(k) defined before eqn.(9). 
If small perturbations of a steady state   Cs are considered then, this steady state is asymptotically stable if the real parts of the 
Jacobian eigenvalues are all negative, that is Re(λ  (i))<0, for all ’i’ [73,233,234]. If the system is stable then, it reaches the same 
QSS after cessation of a dynamic impulse-like perturbation, or it reaches another QSS after cessation of a stationary step-like 
(stationary) perturbation. 

Here it is to mention the works of Maria [21-24,185], and of Sewell et al.[229], proving that the optimum concentrations in 
the ‘buffering’ reactions of GERM-s involving the active and inactive forms of the ’catalyst’ ensuring the maximum regulation 
dynamic efficiency vs. perturbations (see below) are those of [G] = [GP], [Gi]=[GiPjPj], of [M] = [MP], [Mi]=[MiPjPj], etc. (for the 
GERM-s types displayed in Figure 4-7).

The main dynamic P.I.-s discussed by Maria [21-24] are the followings (Figure 4-32): 

B-a).- recovering time (τ  (rec,j), or simply τ  (j)) necessary to each GERM’s component to return to their stationary 
concentration (QSS) after an impulse-like perturbation in one component. This P.I. measure of the GERM efficiency to fast 
recover the key-species stationary concentrations is given by the time τ (j) necessary to the species ’j’ to recover its steady-state 
concentration (with an assumed tolerance of 1%, as proposed by Maria, 2005b]). As an example, in Figure 4-27, and Figure 
4-33 is presented how a simple generic GERM of [G(P)1] type is better working, by presenting a better dynamic efficiency 
compared to the simplest [G(P)]0 gene-expression module. Thus, the stationary [P]s and [G]s are recovered faster after an 
impulse perturbation in the [P]s, that is a –10% decline of [P]s at an arbitrary time t=0 [175,176]. As another example, in 
(Figure 4-34) is presented how the dynamic regulatory efficiency (that is the QSS recovering time) depends on the GERM’s 
structure, and its number of effectors (TF). Thus, the regulatory efficiency increases in the order: [G(P)]0 (’1’) < [G(P)1] (‘2’) < 
[G(P)1;M(P)1] (’3’) < [G(PP)2] (’4’).

B-b).- recovering rate RD (Table 4-3) necessary to each GERM component to return to their stationary concentration (QSS) 
after an impulse-like perturbation in one component. As an example, in (Figure 4-26) is presented how RD depends on the 
GERM structure, and its number of effectors (TF). The recovering rate RD reflects the recovering properties of the regulated 
key-P synthesis by the GERM modular system. In a simpler way, the species ’j’ recovering times τ (j) ~ 1/RD and trajectories 
Cj(t) can be obtained by simulation , that is by simulating the GERM system dynamics [ with using the GERM ODE model eqn.
(1A-B), or eqn.(3A-B), or eqn.(8) ] after applying a small impulse perturbation of the species steady-state of +/-10%   C  j,s and 
determining the recovering time until the steady-state   C  j,s is reached with a 1% tolerance [24]. Species recovering trajectory 
and amplitude are both very important (Figure 4-26, and Figure 4-34). As proved by Maria [185], GERMs display very different 
recovering trajectories and amplitudes according to their reaction parhway structure (Figure 4-26). The most effective are the 
GERM types ensuring the smallest amplitude of the recovering pathway, thus not disturbing the other cell metabolic processes. 
As underlined by Maria [185], the recovering trajectories in the G/P phase plane is more ’linear’-like for the efficient GERM-s, by 
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presenting a lower amplitude, thus not disturbing other cell reactions and regulatory circuits.

B-c).- Regulatory robustness. The regulatory robustness of a GERM model is defined by Maria [24] as being the property to 
realize (Min) , where RD denotes the key-species recovering rates, while ’k’ is rate constant vector of the GERM model 
(depending on the micro-organism type). This P.I. can be considered a systemic regulatory property, as long as GERM species 
levels are able to modify the apparent reaction rates. In fact, the cell metabolic network robustness and functionality are linked 
to the cell phenotype and gene regulation scheme (depending on the each individual expression).

B-d).-  Species interconnectivity  in a GERM modular regulatory schema of reactions can be viewed as a degree to which 
they ‘assist’ each other, and ‘cooperate’ during the GERM system recovering to realize optimal regulatory performances. Cell 
species connections appear due to common reactions, or common intermediates participating to chain reactions, or from the 
common cell volume to which all cell species contribute (under constant osmotic pressure, eq. (3A-B, 4A-B, 5, 6), and WCVV 
model hypotheses of the (Table 4-2). Vance et al. [235] reviewed and proposed several quick experimental/computational rules 
to check a reaction schema via species interconnectivities. By inducing experimental perturbations to a (bio)chemical system, by 
means of concentration tracers, or by fluctuating the inputs of the system, one can measure the perturbation propagation through 
the consecutive/parallel reaction pathway. Then, various techniques can determine the ’distance’ among observed species, and 
specific rules can be used to include this information in elaborating a reaction schema [2,24,40,78,107,174-176,189]. Maria 
[24,78,107,174,189] proposed an approximate measure of species interconnectivity related to the species recovering-times after 
a dynamic perturbation, that is: AVG(τ  (j)) and STD(τ  (j)), i.e. the average and the standard deviation of the species individual 
recovering times τ (j), respectively. As AVG and STD are larger, as the cell dynamic regulatory effectiveness is lower, species 
less interconnected, and components recover more disparately (scattered recover times). The higher the number of effectors 
and buffering reactions, the better these dynamic regulatory indices of the GERM are [2,21-24,25,40,78,107,174-176,185,189].

 B-e)  Cell sub-system  QSS  stability  (and, in particular, of a GERM) refers to the system’s capacity to recover a QSS 
after cessation of a dynamic perturbation. Such a property can be highlighted by analysing the QSS of the dynamic GERM 
ODE model eqn.(3A-B) or eqn.(8). The stability property can be evaluated from the analysis of the eigenvalues λ (i) ( i = 
no. of species) of the linearized model Jacobian matrix of elements defined before eqn.(9). 
The QSS is asymptotically stable if the real parts of the Jacobian eigenvalues λ  (i) are all negative, that is Re(λ  (i))<0 for all ’i’ 
[73,231,233,234]. If the system is stable then, it reaches the same QSS after cessation of a dynamic impulse-like perturbation, or 
it reaches another QSS after cessation of a stationary step-like perturbation. Here it is to mention two important observations:

a)	 A characteristic of the WCVV models including the Pfeiffers’constraint eq.(2), translated in eqn.(3A-B, 4A-B, 5, 6), is 
that they are always stable (intrinsic stability), because, as proved by Morgan et al. [113], always Max(Re(λ  (i)))= -D (see 
eq.(3A-B, 5)).

b)	 By contrast, one fundamental deficiency of the classical WCCV model formulation is the lack of the intrinsic stability of 
the cell system model, because these models do not include neither the Pfeiffers’constraint eq. (2), nor an equivalent constraint. 
Consequently, the GERM regulatory mechanism for recovering the system homeostasis (illustrated in Figure 4-7, Figure 4-27, 
Figure 4-34), is not longer efficiently working under a classical WCCV modelling framework, and it becomes invalid, ineffective, 
and not applicable.”

Some rules to link GERM-s when modelling  GRC-s 
The HSMDM model of the case study no. 1 of this book (chap. 5), includes a complex GRC obtained by linking 7 individual 

GERM-s. To ensure the optimal efficiency of the resulted GRC, and their functions into the cell, Maria [21-24] elaborated a couple 
of rules to be followed, and accounted for, when linking GERM-s to form a GRC. This chapter is aiming to briefly review the main 
linking rules, by following the reported results of Maria [21-24,175,176].

When modelling a GRC consisting of a network of GERM-s, „they are two problems to be considered: (i) what types of GERM-s 
have to be chosen from the library of (Figure 4-7) to match the individual gene expression characteristics, and (ii) what rules are 
to applied for linking GERM-s to obtain the holistic regulatory properties of the GRC in the context of the cell balanced growth. 

When develop a math (kinetic) cell structured model linking GERM-s to construct a certain GRC reproducing a certain 
function of the cell, there are two contrary trends in the in-silico analysis: (a) on one hand is the natural approach of using 
simple GERM structures to reduce the large computational effort to estimate rate constants of a HSMDM model, and for its 
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simulation; (b) on the other hand, it is important to use effective and flexible GERM-s able to reproduce individual enzyme-
synthesis, but also holistic properties of the GRC (of Table 4-3; some complex examples are provided by Maria [23]). Below, 
there are reviewed some rules to be applied for linking GERM-s by thus adjusting their regulatory properties to finally obtain 
the GRC with the observed regulatory properties.

Rule 1) The effect of the no. of regulatory effectors (n). By definition, GERM models (see Figure 4-7, and the nomenclature 
given in chap. 4.3) include an adjustable number of ’regulatory effectors’, that is: ’n’ for the [G(P)n] type, or [G(PP)n] series; ’n’ 
and ’n1’ for the [G(P)n; M(P)n1] series. As proved by Maria [24,78,185], and by Yang et al. [228], a quasi-linear relationship of the 
GERM module P.I.-s function of no. of regulatory effectors ’n’ can be derived for every GERM type, of the form  
(Notations: a(o),a(i) denotes the correlation constants related to a certain P.I. and module type). Here, P.I. denotes the regulatory 
performance index (chap. 4.4), such as RD, AVG(τ  (j)), STD(τ  (j)), stability strength, etc. Also, n(i) = number of effectors (P, PP, 
O, etc.) acting in the ’i-th’ allosteric regulatory unit [Li(Oi)n(i)]. Such a dependence can also be observed in (Figure 4-30, Figure 
4-26). In short, Maria [24,78,107,174] proved that (Figure 4-30, Figure 4-26): 

a)	 P.I. improves ca. 1.3-2 times (or even more) for every added regulatory unit to the GERM model. Multiple regulatory 
units lead to an average recovering time AVG(τ  (j)) of the all GERM species much lower than the cell cycle duration ’tc’, under 
a constant logarithmic volume growing rate, D = ln(2)/tc. (see eqn. 4B)

b)	 Combinations of GERM regulatory schemes (with different effectors) can improve the regulatory P.I.-s.

c)	 Certain GERM regulatory modules reported an increased flexibility, due to ‘adjustable’ intermediate species levels. This 
is the case, for instance, of adjusting [M]s in modules [G(P)n;M(P)n1], or of [PP]s in modules [G(PP)n] of (Figure 4-7). Optimal 
levels of these species can be set accordingly to various optimization criteria, rendering complex regulatory modules to be more 
flexible in reproducing certain desired cell-synthesis regulatory properties (see the example given by Maria [189]).

Rule 2) Ranging the number of transcription factors TF and buffering reactions.  To select the suitable GERM structure 
that fits the available experimental (kinetic) data of the cell metabolism, the first problem to be solved is related to the number 
of buffering reactions of type G + P <===> GP or M + P <===> MP necessary to be included in the model to obtain the desired 
optimal P.I.-s (Figure 4-7, Figure 4-34, Figure 4-35, Figure 4-36). Evaluation of P.I.-s for a large number of GERM types (Figure 
4-7) [2,21-24,40,74,78,107,174,189,194] indicated that the dynamic regulatory efficiency of [G(P)n], or of [G(PP)n] modules 
is nearly linearly increasing with the number ’n’ of buffering reactions (following a quasi-linear correlation   ; see 
also Figure 4-30, and Figure 4-26). Moreover, the plots of (Figure 4-26) reveal that this P.I.-s increase is more pronounced in 
the case of GERM-s with [G(PP)n] model structures, that use dimeric TF-s (that is PP instead of simple P). Also GERM-s of type 
[G(P)n; M(P)n1] models that use a control scheme in cascade of the gene expression reported superior regulatory P.I.-s.

Such a GERM module efficiency ranking concerns not only the dynamic efficiency, but also most of P.I.-s, as discussed in 
the previous paragraphs, such as the stationary regulatory effectiveness; low sensitivity vs. stationary perturbations; stability 
strength of the homeostatic QSS, and species recovering trajectories more linear in the G/P phase plane, and of a lower amplitude.

To summarize, when selecting a suitable GERM to be included in a GRC the following issues are to be considered [21-
24,78,107,174,189]:

a)	 Modules reporting high stationary-regulation P.I.-s usually, also reported high dynamic-regulation   P.I .-s.

b)	 The catalyst activity control at a single enzyme level, that is structures [G(P)0], [G(PP)0], [G(P)n;M(P)0] of (Figure 
4-26, and Figure 4-34), which are lacking of buffering reactions able to modulate the gene G and M catalytic activity appear to 
be of lowest regulatory efficiency.

c)	 Multiple copies of effector molecules (i.e. O, R, P in Figure 4-28,  Figure 4-7,  Figure 4-5,  Figure 4-36), which reversibly 
and sequentially (allosterically) bind the catalyst (G, M) in negative feedbacks, improve the regulation effectiveness.

A structured cascade control of the ’catalyst’ activity, with negative feedback loops at each level as in the [G(P)n;M(P)n1] 
model series, improves the GERM regulatory P.I.-s and amplifies the effect of a change in a stimuli (inducer). The rate of the 
ultimate reaction is amplified, depending on the number of cascade levels and catalysis rates (see the example of chap. 4.3, 
before the subchap. “Rate constant estimation in WCVV models of GERM-s or GRC-s). As an example in (Figure 4-28, Figure 
4-7, Figure 4-5, Figure 4-36), by placing regulatory elements (R, P, PP,…) at the level of mRNA (i.e. the species denoted by M), 
and at the level of DNA (i.e. species denoted by G) in the [G(P)n;M(P)n1] model is highly effective. 
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d)	 It was proven [21,23,24] that the   P.I  .-s of GERM-s increase nearly linearly with the number n(i) of effectors (P, PP, O, 
R, etc. in Figure 4-51) acting in the ith allosteric unit [L(i)(O(i))n(i)] of buffering reactions applied at various level of control of 
the gene expression. Such an observation is valid for both dynamic and stationary P.I.-s of the (Table 4-3), and chap. 4.4. 

e)	 P.I. -s improves ca. 1.3-2 times (or even more) for every added regulatory unit to the same GERM type (Figure 4-30). 
Multiple regulatory units lead to much lower average recovering times AVG(τ  (j)) than the cell cycle period tc, under constant 
logarithmic volume growing rate, Ds = ln(2)/tc (eq.4B).

f)	 Combinations of regulatory schemes and units (with different effectors) can improve the regulatory P.I.-s [21-24,78,174].

g)	 Certain regulatory modules reported an increased flexibility, due to ‘adjustable’ intermediate transcription factors TF 
species levels. This is the case, for instance, of adjusting [M]s in module [G(P)n;M(P)n1] and of [PP]s in the modules [G(PP)n]. 
Optimal levels of these species can be set accordingly to various optimization criteria, rendering complex regulatory modules to 
be more flexible in reproducing certain desired cell-synthesis regulatory properties. Thus, Maria [107,189] proved existence of 
an optimal [TF] concentration leading to optimal P.I.-s of a GERM (Figure 4-51).

Rule 3) The effect of the mutual catalysis in the G/P synthesis. One essential aspect of the [G(P)n], [G(PP)n], and [G(P)
n;M(P)n1] kinetic models of GERM--s is the mutual catalysis of G and its encoding protein P synthesis. If one adds the WCVV 
modelling constraints eqn.(3A-B, 4A-B, 6, 8), and the requirement of getting a maximum dynamic responsiveness and efficiency 
by keeping [G]s = [G(P)]s = [G(PP)]s = …= [G(P)n]s, as discussed by Maria [21-24,78,174,185]. This direct and indirect link (via 
GP, GPP, etc., and the cell volume/osmotic pressure) of G and P syntheses ensures a quick recovering of both stationary [G]s 
and [P]s after any small perturbation. To prove this in a simple way, one considers the synthesis of a generic G/P pair in a GERM 
of [G(P)1] type (denoted by ’2’) or a [G(P)0] type (denoted by ’1’) (Figure 4-7, and Figure 4-34). After estimating the rate 
constants from solving the stationary model equations by using the homeostatic concentrations of ( Figure 4-52 , high ballast 
cell case), one determines the dynamic efficiency for each GERM by applying a negative 10% impulse perturbation in the [P]s = 
1000 nM at an arbitrary time t=0. The obtained recovering trajectories of P and G obtained by model simulations are plotted in 
(  F igure 4-27 , and   F igure 4-34 ). The plots reveal a very good regulatory efficiency of the [G(P)1] type of GERM, both G, and 
P species presenting relatively short recovering rates, and negligible for the other species. These plots reveal, in a simple way, 
the self-regulation of the G/P pair synthesis: after an impulse perturbation leading to the decline of [P]s from 1000 nM to 900 
nM, the very fast buffering reaction G + P <===> GP leads to restore the active G, whose concentration quickly increases from 
0.5 nM to [G] = 1.027 nM. As a consequence, the synthesis rate of P increases leading to a fast P recovering rate which, in turn, 
contributes to the recovering of the G-lump steady-state. For comparison, as revealed by the results displayed in the (  F igure 
4-33 ), the dynamic efficiency of the module [G(P)0] is much lower, species recovering their QSS over longer transient times. 
Also, the species connectivity is better in the [G(P)1] case compared to [G(P)0], due to the reported smaller STD(τ (j)) (Table 
4-3). Consequently, removal of the buffering reaction that automatically adjusts the ’catalytic activity’ of G, will: (i) decrease the 
species inter-connectivity (by increasing the standard deviation of the recovering times); (ii) will increase the species recovering 
times; (iii) will increase the sensitivities of the species steadystate vs. external nutrients (see sensitivity coefficients vs. NutG in 
the   F igure 4- 33). As expected, the P.I.-s of the GERM–s depend not only on (a) the no. of effectors (buffering reactions), but 
also on (b) the TF types (P, or PP), and even more (c) on the used control scheme (i.e. simple buffer reaction of G-activity, or in 
a cascade of buffer reactions, like the [G(P)n;M(P)n1] reaction schemes).  

To exemplify these issues, one considers the same generic G/P gene expression example with the species homeostatic 
stationary concentrations given by Maria [21-24,175,176] (the high ballast cell case). For comparison, one considers the gene 
encoding gene G expression by means of GERM-s of various structures given in the (Figure 4-34), that is [G(P)0] without mutual 
catalysis, [G(P)1] with mutual catalysis and one buffering reaction, or [G(PP)2] with dimeric TF=PP, or even [G(P)1;M(P)1] 
with mutual catalysis and a cascade control via buffering reactions at the level of G and M. The rate constants have been estimated 
by solving the stationary form of the GERM model with the stationary concentrations. Additionally, the requirement of getting 
a maximum dynamic responsiveness and efficiency, as discussed by Maria [21-24,185], leads to adopt [M]s = [M(P)]s = 0.5 nM 
and [G]s = [G(PP)]s = [G(PPPP)]s = 1/3 nM. The resulted recovering trajectories of the G and P species after a –10% impulse 
perturbation in the [P]s = 1000 nM at an arbitrary t=0, are comparatively presented in the (Figure 4-34). It is to remark that the 
incomplete [G(P)0] module reports the worst dynamic efficiency, with very slow recovering tendencies after a perturbation, as 
depicted in (Figure 4-34). Better performances are reported by [G(P)1] GERM module type. Even if a better regulatory efficiency 
is reported by the cascade control of separately considered transcription and translation of the [G(P)1;M(P)1] module, the best 
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QSS recovering efficiency is reported by the [G(PP)2] module that uses two buffering reactions and a dimeric PP as TF, quickly 
synthesized in a small amount (of optimal level [PP]s = 0.01 nM determined together with the model rate constants to ensure 
an optimal P.I.). Due to such reasons, GERM-s modules of type [G(PP)2] will be used to build-up the GRC for the mer-operon 
expression in the case study no. 1 (chap. 5) of this book.

All the above analyzed GERM-s have been modelled in a WCVV framework (eq. 3a-b, 4a-b, 5-8). For such WCVV kinetic 
models, it is to remark the way by which the variable cell-volume plays an important role to species interconnectivity (direct or 
indirect via the cell volume) within a certain GERM regulatory module or among linked modules. Even if species connectivity can 
be expressed in several ways [24,235], this index is directly dependent on the manner by which species in a GERM or in a GRC 
recover more or less independently after a perturbation. When the species connectivity increases, then they recover with a more 
comparable rate (or equivalently, over the same time), by ‘assisting’ each other to cope with a perturbation (see the comparison 
of species recovering times in the Figure 4-33). By contrary, when the species are more disconnected, they recover in a more 
disparate way, and the GERM presents weaker P.I.-s. [reporting not only larger species recovering times τ (rec)(j), but also 
larger state sensitivities to external nutrients, see Table 4-3].

Thus, the mutual autocatalysis G/P appears to interconnect the GERM key-components such that they are regulated 
more as a unit than would otherwise be the case. Interconnectivities (the degree to which a perturbation in one component 
influences others) may arise from a direct connection between components (e.g. when they are involved in the same chain of 
reactions), or from an indirect connection (via cell volume changes for an isotonic system). Our analysis indicates that mutual 
auto-catalysis is a particularly strong type of interaction that unifies the regulatory response, and they serve to “smooth” the 
effects of perturbations. It also suggests a way to quantitatively evaluate interconnectivities between all cellular components: 
each component could be perturbed one at a time, and recovery rates or some other measure of regulatory effectiveness could 
be evaluated for all components. The resulting relationships thus reflect the holistic properties of the in-silico (model-based) 
analyzed GRC-s.

Rule 4) The effect of cell system isotonicity. The effect of the isotonicity constraint eqn.(2, 3a-b, 4a-b, 5-8) of a WCVV cell 
model can be easily proved [21-24]. By simulating the species dynamics which belong to a GERM of a [G(P)1] model type, the 
effect of applying a –10% impulse perturbation in the key-protein homeostatic level [P]s = 1000 nM at an arbitrary time t=0, on 
the keyspecies (G, P) can be observed in (Figure 4-27), while species recovering times are given in (Figure 4-33). By contrast, 
in a WCCV cell model formulation, when the isotonicity constraint is missing from the model, the key-species do not recover 
after a dynamic perturbation (!). By contrast, as revealed by the performed simulations with the a [G(P)1] module, the system 
isotonicity imposes relatively short recovering rates for the key-species, and negligible for the other GERM species present in a 
large amount (lumped nutrients and metabolites). As proved by Maria [21-24,175,176], the WCVV models, with including the 
’cell ballast’ effect, and the G/P mutual autocatalysis, are more flexible and adaptable to environment constructions, being able 
to better represent the influence of the environmental changes on the cell homeostasis.

Corolary. The effect of the isotonicity constraint eqn. (2, 3a-b, 4a-b, 5-8) in a WCVV cell model is also related to the more 
realistic prediction of P.I.-s of GERM-s. As proved by Maria et al.[23,60], the WCCV dynamic models might be satisfactory for 
modelling many cell sub-systems, but not for an accurate modelling of cell GRC-s, and the cell holistic properties under perturbed 
conditions, or the division of cells [113], by distorting very much or even misrepresenting the predicted results, as exemplified 
by Maria [21-24,60] for both stationary and perturbed cell growing conditions (Figure 4-53, and Figure 4-54).

Rule 5) The importance of the adjustable regulatory TF-s in a GERM. As proved by the example of (Figure 4-34), and those 
of [24,185], dimeric TF-s, such as PP in [G(PP)n] instead of simple P in [G(P)n], leads to several conclusions:

a)	 The dynamic regulatory efficiency increases in the order: [G(P)0] (no buffering reaction) < [G(P)1] (one buffering 
reaction) < [G(P)1;M(P)1] (cascade control and also a buffering reaction at the M level) < [G(PP)2] (two buffering reactions, 
with dimeric TF= PP, in a small quantity). Some GERM modules reported an increased P.I. flexibility, due to ‘adjustable’ 
intermediate TF species levels. This is the case, for instance, of adjusting [M]s in the module [G(P)n;M(P)n1], or of [PP]s in the 
modules [G(PP)n]. Optimal levels of these intermediate species can be determined from matching various optimization criteria, 
rendering complex GRC-s to be more flexible in optimally reproducing certain desired cell-synthesis regulatory properties.

b)	 The dynamic regulatory efficiency (defined in Table 4-3) decreases in the following order [21,23,24,185]:
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 Min(   τ  (rec)P) : [G(PP)2] > [G(P)1;M(P)1] > [G(P)1] > [G(P)0] Min(STD): G(PP)2 > [G(P)1;M(P)1] > [G(P)1] > 
[G(P)0] 

c).- The stationary regulatory efficiency of [P]s decreases in the same order: Min S([P] ; [NutG]): [G(PP)2] > [G(P)1;M(P)1] 
> [G(P)1] > [G(P)0]

Rule 6) The effect of the cell ballast on the GERM efficiency. When constructing simplified WCVV cell models, it is important 
to know what is the minimum level of simplification to not essentially affect the holistic properties of the cell, and their key-
functions (Outline 4-1). This paragraph proves why it is essential to include in a WCVV cellular model the so-called ’cell ballast’, 
that is the sum of concentrations of all species, which are not accounted in the ODE mass balance of the GRC model. Basically 
the isotonic constraint imposes that all species (individually, or lumped) to be accounted in the cell model, because species 
concentrations and rates are linked through the common cell volume eq.(2, 4A, 6). As proved by Maria [21,170,175,176], and 
(Figure 4-52), in such WCVV cell model constructions, the recovery rates are properties of all interactions within the system 
rather than of the individual elements thereof [73].

However, another important question derived from the isotonicity constraint refers to the degree of importance of the cell 
content (ballast) concerning the cell reactions, and the species QSS-levels ’resistance’ to perturbations. In other words, the P.I.-s 
of a GERM or of a GRC are the same in a ’rich’ cell of high cell

content (ballast), compared to those from a ’poor’ cell of low cell content (ballast)? The answer is no. To prove that in a simple 
way, one considers a GERM of a generic [G(P)1] type placed in an E. coli cell with two different nominal conditions given in 
(Table 4-4) for a high-ballast cell, and a low-ballast cell. To not complicate these models, lumped gene and protein metabolites 
have been considered. Being present in a large amount (that is lumped [MetG] = 3E+6 nM, and lumped [MetP]= 3e+8 nM), these 
components also play the role of cell ballast, their concentrations being set to values much larger than those of the other cell 
species. Simulations of Maria and Scoban [175,176], allowed obtaining the species trajectories, and their recovering times after 
a –10% impulse perturbation in the key-protein [P]s of 1000 nM applied at an arbitrary time t=0. These recovering trajectories 
are displayed in (Figure 4-52). The species recovering

times are presented in (Table 4-5) for the [G(P)1] model comparatively to a [G(P)0] model, both used under the WCVV 
approach. The results clearly indicate the regulatory superiority of the [G(P)1] model.”

” Selection of appropriate lumped [MetG] and lumped [MetP] will lead to understanding their effect on the cell self-regulatory 
properties. Low concentrations relative to the total number of other molecules in the cell afforded shorter recovering times  τ
(rec)(P ) for the key-protein P. For instance, in the [G(P)1] module case, of low ballast case, with lumped [MetG] =2000 nM, and 
lumped  [MetP]   = 3000 nM, and (all [Cj]) = 12001 nM, the resulted recovering times of the key-species G/P are  τ (rec)(P ) = 
103 min, and  τ (rec)(G ) =223 min after a –10% impulse perturbation in the [P]s of 1000 nM at an arbitrary t = 0 (Figure 4-52). 
Whereas for a high-ballast cell case with lumped [MetG] = 3e+6 nM, and lumped [MetP] = 3e+8 nM, and (all [Cj]) = 6.06e+8 nM, 
the resulted  τ (rec)(P ) = 127 min, and  τ (rec)(G ) = 118 min after a –10% impulse perturbation in the [P]s of 1000 nM at an 
arbitrary t=0 (Table 4-5, and Figure 4-52).

We refer to this as the ’Inertial Effect’. In an in-silico model estimation/simulation, it arises because the invariance 
relationships described above (chap. 4.2, 4.2.1.2) for the WCVV approach require that larger rate constants for P and G synthesis 
be used to counter-balance lower [MetP] and [MetG] content into the cell,  and these constants are determinants for the key-
species recovering rates   ( τ (rec)(j))  after a dynamic perturbation. On the other hand, when metabolite concentrations 
were low (low-ballast cell case), perturbation of the cell volume (by the [P]s-perturbation) was greater than those when they 
cell-balast was high (the volume dynamics plots not presented here; see [170,175,176]). The attenuation of the perturbation-
induced volume changes by large metabolite concentrations is called the  ’Ballast  Effect’ . Cell ballast diminishes the indirect 
perturbations, otherwise seen in concentrations of all cellular components. Thus, [G] was perturbed far less, as a result of an 
impulse perturbation in [P], for the cell containing higher metabolite concentrations than for that containing lower metabolite 
concentrations (Table 4-5, and Figure 4-52). Thus, increasing metabolite concentrations attenuates the impact of perturbations 
on all cellular components but negatively influences their recovery times.

 In fact, the so-called ‘ballast effect’ shows how all components of the cell are interconnected via volume changes. It represents 
another holistic property of cells, and it is only evident with only variable-volume VVWC modelling framework. Its importance 
is related to the magnitude of perturbations and the total number of species in a cell. For a single perturbation in real cells, the 
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’Ballast effect’ will be insignificant due to the large number of total intracellular species. However, the sum of all perturbations 
experienced during a cell cycle might be significant. 

Rule 7) The effect of GERM complexity on the resulted GRC efficiency, when linking GERM-s. One important issue to be 
solved when linking GERM-s 

One important issue to be solved when linking GERM-s construct a GRC is the degree of detail of the adopted GERM-s to 
accurately reproduce the GRC regulatory properties. The examples discussed below and by Maria [21-24,78] revealed that more 
important than the number of considered species in the regulatory loops is the selected GERM regulatory scheme, able to render 
the GRC holistic synchronized response to environmental perturbations.

Consequently, when developing a suitable WCVV kinetic model of a GRC, it is important to adopt a suitable reduced model 
structure by means of an acceptable trade-off model simplification-vs.-model quality (adequacy). Adoption of too complex 
reaction pathways is not desirable when developing cell simulators, these structures being difficult to be modelled by using 
ODE kinetic models with continuous (or stochastic) variables, and difficult to be estimated, due to the very large number of 
unknown parameters (rate constants, diffusion coefficients, etc.), and unknown steady-state concentrations. Beside, cell model 
constructions with too complex cell modules lead to inoperable large models very difficult, if not impossible, to be used for GMO 
cell design purposes. The alternative is to use reduced ODE models with a number of lumped species and enough reactions 
(chap. 4.2.1.4.) to fairly reproduce the experimental data, but simple enough to make possible a quick dynamic analysis of the 
metabolic process and of its regulation properties.

To exemplify how a suitable trade-off between GRC model simplicity and its capabilities can be obtained, one considers the 
problem of adequately and efficient linking of two GERM-s (related to the expression of G1/P1 and G2/P2 pairs) such that the 
resulted GRC to present optimal P.I.-s. To solve this problem, Maria [78] compared two GERM’s linking alternatives (Figure 4-35, 
and Figure 4-55):

 Alternative A: [G1(P1)1] + [G2(P2)1] (10 individual and lumped components). Alternative B: [G1(P1)1;M1(P1)1] + 
[G2(P2)1;M2(P2)1] (14 individual and lumped components). The GERM mutual linking in the alternative A is as following: 
the expressed P1 in [G1(P1)1] is the metabolase that converts NutG in MetG2 and NutP in MetP2 in the [G2(P2)1]. In turn, the 
expressed P2 in [G2(P2)1] is the polymerase that converts MetG1 in G1 in the modules [G1(P1)1] + [G2(P2)1]. 

The GERM linking in the alternative B is as following: : the expressed P1 in [G1(P1)1;M1(P1)1] is the metabolase that converts 
NutG in MetG2 and NutP in MetP2 in the [G2(P2)1;M2(P2)1]. In turn, the expressed P2 in [G2(P2)1;M2(P2)1] is the polymerase 
that converts MetG1 in G1 in the module [G1(P1)1;M1(P1)1].

Simulations revealed that alternative B is superior, presenting better stationary P.I.–s (Figure 4-35), and dynamic P.I.-s 
(Figure 4-55). The ’cost’ in increasing complexity is minimum, the GRC including 14 species into the model (alternative B) 
compared with only 10 species (alternative A). To conclude, in spite of a slightly more complex structure (14 vs. 10 individual 
and lumped components, and two more buffering reactions), the GRC of alternative B presents much better P.I.-s, that is (values 
not presented here): (i) key-species shorter recovering times after an impulse perturbation; (ii) lower AVG and STD species 
connectivity indices; (iii) species QSS concentrations lower sensitivity vs. environmental perturbations. 

Thus, the right choice of the GERM structures in a GRC is an essential modelling step. This example proves how, with the 
expense of a little increase in the model complexity (4 additional species and 2 buffering reactions), the cascade control in a 
GERM of [G(P)n;M(P)n1] type (Figure 4-7) presents superior regulatory properties suitable for designing robust GRC-s, with 
easily adjustable properties via model parameters, including a better species synchronization when coping with perturbations 
(i.e. low AVG, and STD indices). The same positive conclusions also concern the GERM structures of [G(PP)n] type (Figure 4-7), 
as proved by (Figures 4-26, 4-30, 4-34, 4-49, 4-50).

Rule 8) Cooperative vs. concurrent linking of GERM-s in GRC and species interconnectivity. 

When coupling two or more GERM modules in a GRC of a certain living cell, the lumped nutrients, and metabolites involved 
in the G/P syntheses are roughly the same (Figure 4-54). The modelling problem is what alternative should be chosen (see 
Figure 4-56)??? A competitive scheme (due to the common substrate, i.e. MetG1,2 and MetP1,2), or a cooperative scheme, the 
two GERM-s mutually supporting their regulatory efficiency??? For exemplification, one considers the problem of adequate and 
efficient linking of two GERM-s, related to the expression of G1/P1 and G2/P2 pairs. By using simple [G(P)0], or [G(P)1] module 
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types, there are tested three alternatives of coupling GERM-s in a GRC, as illustrated in (Figure 4-56), that is: 

Alternative A: Competitive expression (competition on using the common metabolites) of the type [G1(P1)0] + [G2(P2)0] ;

 Alternative B: Simple cooperative expression of [G1(P1)0] + [G2(P2)0] modules. P1 is permease and metabolase for both 
GERM-s; P2 is polymerase for replication of both G1 and G2 genes.

 Alternative  C: cooperative expression (identical to  alternative   B), but adding buffer reversible regulatory reactions to 
modulate the G1, and G2 catalytic activity in the modules [G1(P1)1] + [G2(P2)1], respectively.

Tests were performed by using the WCVV modelling framework, and the nominal high-ballast cell condition of (Table 4-4). 
Simulations lead to very interesting conclusions, as followings [24]:

a)	  In the Alternative   A, one links two modules [G1(P1)0] + [G2(P2)0], both ensuring regulation of the two proteins 
(P1, P2) synthesis, in a concurential disconnected way (Figure 4-56). For this hypothetic system, synthesis of P1/G1 and P2/
G2 from metabolites is realized with any interference between modules {the simulated case study in Figure 4-57 corresponds 
to the following steadystate: [P1]s = 1000 nM, [P2]s = 100 nM, [G1]s = 1 nM, [G2]s = 1 nM}. The only connection between the 
two GERM-s is due to the common cell volume to which both protein syntheses contribute. If one checks the system stability, by 
applying a +/-10% impulse perturbation in [P1]s, it results an unstable system, evolving toward the decline and disappearance 
of one of the proteins (i.e. those presenting the lowest synthesis rate). Consequently, the homeostasis condition is not fulfilled, 
the cell functions cannot be maintained, and the disconnected protein synthesis results as an unfeasible and less plausible GERM 
linking alternative, see the details of [24].

b)	 In the  Alternative   B, the simple cooperative linking of [G1(P1)0] + [G2(P2)0] modules in (Figure 4-56, and Figure 
4-57) ensures specific individual functions of each protein, i.e. P1 lump plays both permease and metabolase functions, while 
P2 is a polymerase. 

c)	 In the  Alternative   C, the simple cooperative linking of [G1(P1)0] + [G2(P2)0] system of the  Alternative   B has 
been consolidated by adding simple effectors for the gene activity control, thus resulting the consolidated cooperative system 
[G1(P1)1] + [G2(P2)1], of (Figure 4-56, and Figure 4-57), where the effectors P1 and P2 act in two buffering reactions, G1+P1 
<==> G1P1, and G2+P2 <==> G2P2, respectively, with the stationary states [G1]s = [G1P1]s = 1/2 nM, and [G2]s = [G2P2]s 
=1/2 Nm, thus ensuring maximum dynamic   P.I .-s.. 

The species steady-state (QSS) concentrations are given in (Table 4-4).

The same cooperative linking rule of GERM-s can be repeatedly applied, by using the same strategy. Of course, other GERM 
types can be used as well. For instance, when [G(PP)n] modules are used, the more effective effectors are the dimers PP, acting 
in ’n’ buffering reactions of the type, G+PP<==>GPP<==>…..<==>GPn, with the stationary states [G]s = [GP1]s = [GP2]s = …= 
[GPn]s = 1/(n+1) nM. The WCVV model rate constants should be estimated from the species stationary concentration vector 
Cs, and by imposing regulatory optimal characteristics discussed by Maria [21-24], and presented in the chap. 4.3 (eq.(10)). 
From the same reasons, stationary levels of active and inactive forms of catalyst should be adopted, [L]s = [TF1]s = [TF2]s = …= 
[TFn]s = 1/(n+1). Besides, the dissociation constant of the (L:TFn) complex in the buffering reactions k(diss) >> D has been 
adopted, e.g. k(diss) ≈  (1e+5 to 1e+7)D, being much higher than other rate constants of the GERM reactions [Maria, 2005b]. In 
subsequent works, Maria [1,2,21-24,25,40,60,78,107,189,174-176,194] also proved that optimization of the GERM’s P.I.-s with 
the multiobjective criteria summarized by Maria [21,24,189] (eqn.(10)) leads to small values for the intermediate [PP]s (the 
active parts of dimeric TF-s). 

The stability and the dynamic regulatory characteristics of all three GRC systems   ( A-C   ) (above defined) have been determined 
by studying their QSSrecover after a +/-10%[P1]s impulse perturbation. The results, presented by Maria [24,175,176], reveal 
the following aspects concerning the alternative GRC systems   [ A, B, C] :

a)	 All three systems are stable, that is Max(Re(λ  (j)))= - D < 0 (where λ  (j) are the eigenvalues of the ODE model Jacobian 
matrix JC, defined above eqn. (9). The GRC systems   [  B] and   [  C] recover faster after a dynamic perturbation in [P1]s. It results 
that the cooperative module linking is superior to the competitive GERM’s linking alternative   [  A], being only one viable 
linking alternative that ensures the system homeostasis and the cell equilibrated metabolism. The   [  B] and   [  C] GERM’s linking 
alternatives are superior because they preserve specific functions of each protein inside the cell. The GERM’s linking alternative 
[C] presents the best P.I.-s from the all three checked linking alternatives due to the additional regulatory effector of type G+P 
<==> GP.
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b)	 The GRC system is as better regulated as the effector is more effective (e.g. the use of multiple buffering reactions, with 
dimeric TF-s, and a cascade control of the expression, of type  [G(PP)n ; M(PP)n] (not investigated here here).

c)	 The use of efficient effectors and multiple regulation units can improve very much the dynamic P.I., in the following 
relative order: [G(P)n] < [G(PP)n] < [G(P)n ; M(P)n1] < [G(PP)n ; M(PP)n1] .

d)	 Dynamic perturbations affect rather species present in small amounts inside the cell, while recovering times for the 
other species (e.g. lumped metabolites MetP, MetG of large concentrations) are negligible.

The design procedure of a regulatory network GRC can be continued in the same way, by accounting for the expression of 
additional genes (and their suitable GERM-s, according to the experimental information about the regulation dynamics). For 
instance, in the simplified representation of Maria [24], a 3-rd GERM for the P3 synthesis can be added to the  Alternative [   
C], by allocating specific functions to the P1, P2, and P3 lumped proteins, as follows: P1 and P3 are permease and metabolase 
enzymes, which ensure nutrient import inside the cell, and their transformation in gene-metabolites (MetG1-MetG2-MetG3) and 
protein-metabolites (MetP1-MetP2-MetP3) respectively. Protein P2 lumps polymerases able to catalyze the genes G1, G2, and 
G3 production. If one considers the simplest effector case, the resulted GRC includes the following three modules [G1(P1)1] + 
[G2(P2)1] + [G3(P3)1], which regulate the synthesis of P1, P2 and P3, in a cooperatively interconnected way, which preserves 
the protein functions.

Rule 9) The optimal value of TF.  It is self-understood that, in a realistic WCVV model, the holistic properties the whole cell 
and of of the analysed GRC should be preserved, and modulated via model structure and parameters. One of the cell modelling 
principles postulates that the concentration of intermediates used in the GRC-s should be maintained at a minimum level to not 
exhaust the cell resources but, at the same time, at an optimal value to maximize the GRC P.I.-s. Such optimal [TF]s are obtained 
by solving a multi-objective optimization problem [21,175,176,189], see chap. 6, eqn.(10) . An example was provided by Maria 
[189] in the case of a genetic switch (GS) in E. coli cell, modelled under the WCVV approach. The two considered self- and cross-
repressing gene expression modules of the GS are of the type [G2(P2P2)1(P3P3)1] + [G3(P3P3)1G3(P2P2)1] (Figure 4-58). 
These well chosen GERM-s models are very flexible, allowing adjusting the regulatory properties of the GS (that is the switch 
certainty, its good responsivity to inducers, and its good dynamic and stationary efficiency). Besides, based an adequate WCVV 
math model, and by applying an optimization procedure, Maria [189] proved in a GS case that it exists an optimal level of the 
TF-s (that is [P2P2]s, or [P3P3]s in the present case, see Figure 4-52) that are associated to the optimal holistic regulatory 
properties of the GRC (low sensitivity vs. external nutrients, but high vs. inducers), and that these TF-s are rather dimmers than 
monomeric molecules. These in-silico obtained results have been confirmed by the literature experimental data [189].

Rule 10) Additional aspects to be considered when linking GERM-s. Cell GRC-s and, in particular, those involved in some 
protein synthesis regulation, are poorly understood. The modular approach of studying the regulation pathways, accounting for 
its structural and functional organization, seems to be a promising route to be followed, as it is proved by the case study no. 1 
(chap. 5) of this work.. Because a limited number of GERM types exist (see the library of Figure 4-7), individual GERM-s can be 
separately analysed, and checked for efficiency in conditions that mimic the stationary and perturbed cell growing conditions, as 
above exemplified with some simple GERM-s, and GRC-s. Efficient GERM–s (of regulatory indices of Table 4-3) are then linked 
accordingly to certain rules to mimic the real metabolic process, by ensuring the overall GRC efficiency, cell system homeostasis, 
and protein individual functions. Module linking rules are not fully established, but some and above mentioned principles (i.e. 
rules 1-9) reviewed by Maria [21-23], should be fulfilled. The hierarchically organised genetic regulatory network (GRN, GRC) 
includes a large number of compounds with strong interactions inside a module and weaker interactions among modules, 
so that the whole cell system efficiency can be adjusted. By testing several ways to link GERM-s, Maria [24] advanced some 
supplementary rules to be accounted for, that is:

10-a) The linking reactions between GERM-s are set to be relatively slow comparatively with the module core reactions. In 
such a manner, individual modules remain fully regulated, while the assembly efficiency is adjusted by means of linking reactions 
and intermediate species, and TF levels. To preserve the individual regulatory capacity, the strength of linking reactions among 
modules would have to decline as the number of linked modules increases.

10-b) When linking GERM-s, the main questions arise on the connectivity mechanism and on the cooperative vs. uncooperative 
way by which proteins interact over the parallel/consecutive metabolic pathways inside or between GERM-s [24,82,146,147,185]. 
In spite of an apparent ‘competition’ for nutrient consumption, protein synthesis is a closely cooperative process, due to the 
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specific role and function of each protein inside the cell (see the above ’rule no. 8’). In a cooperative linking, common species (or 
reactions) are used for a cross-control (or cross-catalysis) of the synthesis reactions. Thus, the system stability is strengthened, 
while species inter-connectivity is increased leading to a better treatment of internal/external perturbations.

10-c) Protein (enzyme) interactions are very complex, being part of the cell metabolism and distributed over the GRN nodes. 
There are many nodes with few connections among proteins and a small, but still significant, number of nodes with many proteic 
interactions. These highly connected nodes tend to be essential to an organism and to evolve relatively slowly. At a higher level, 
protein interactions can be organized in ‘functional modules’, which reflect sets of highly interconnected proteins ensuring 
certain cell functions (Figure 4-10, and Figure 4-18). Specific proteins are involved in nutrient permeation (permeases), in 
metabolite synthesis (metabolases), or in the gene production (polymerases). In general, experimental techniques can point-out 
molecular functions of a large number of proteins, and can identify functional partners over the metabolic pathways (see chap. 
7). Moreover, protein associations can ensure supplementary cell functions. For instance, enzyme associations (like dimeric or 
tetrameric TF-s) lead to the well-known ‘metabolic channelling’ (or tunnelling) process, that ensures an efficient intermediate 
transfer and metabolite consecutive transformation without any release into the cell bulk phase, thus avoiding the slower 
diffusional processes [21-24].

10-d) By applying the former rule, it results that, when building-up a kinetic model of a GRC, comprising a couple of GERM-s, 
an effective module linking strategy has to ensure the cell-functions of individual proteins and of protein associations over 
the metabolic synthesis network. As a general observation, even if some GERM modules do not include reactions in common, 
the modules are anyway linked through the cell volume (to which all cell species contribute, eqns.(2,6)] and due to some 
intermediates controlling module interactions in the GRC. Only the WCVV modelling framework is able to account for such cell 
regulatory characteristics. 

10-e) A natural strategy for building complex and realistic cell dynamic models is to analyse independent functional reaction 
pathway modules or groups of closely interacting cellular components, and then link them. The WCVV approach may facilitate 
this strategy. Each module (such as GERM-s, GRC-s, or parts of the CCM) could be modelled as a separate ’entity’ growing at 
the actual rate of the target cell. The volume of the newborn cell and the environment characteristics could match those of the 
target cell. To allow this, and to reproduce the ’cell ballast effect’, lumped molecular species could be defined into each cell where 
a GERM is tested, in amounts equal to those of the target cell minus those due to the components of the investigated module. 
In such a way, each tested cell carrying a certain defined GERM, or GRC would grow at the same observed rate. As a result, 
linking GERM-s would be a seamless process requiring only that the ballast level to be kept at its experimental level. This is an 
importantant WCVV approach, allowing to independently simulate some cell reaction pathway modules, by placing them into a 
’virtual cell’ of which characteristics and properties are reproduced by a lumped dynamic model.

10-f) Application of the WCVV modelling approach demonstrates that each cell component affects, and is affected by, all other 
cellular components [21-24,78,174]. Indirect inter-connectivities among species / reactions arise because all components in a 
cell contribute to cell volume [eqn.(2, 6)], and cell volume influences component concentrations [eqn.(3A-B)]. Thus, perturbations 
in one component reverberate throughout the all cell species. The importance of these indirect relationships will vary with the 
diversity and complexity of cellular components. Increasing numbers and concentrations add ’ballast’ to the cell, strengthening 
these indirect relationships, while increasing diversity allows individual metabolites to be present at lower concentrations, thus 
improving the dynamic responses of GERM-s and of GRC-s to perturbations. Another issue, thus far unexamined, is how specific 
types of interconnectivities affect the regulatory behaviour of cells. This could be probed by using the experimental methods 
developed by Vance et al.[235] to deduce connectivities in biochemical pathways from the effects of an impulse perturbation in 
one of the species.

10-g) When modelling complex operon structures [see the chap. 5 of this book], simple, but effective GERM structures (also 
in agreement to the experimental observations on the cell processes dynamics) should be adopted to not complicate too much 
the WCVV kinetic model. The default GERM is the [G(P)1]. But, according to the experimental data and interactions among genes 
and proteins, more complicated, and effective GERM constructions, such as [G(PP)1] can be elaborated, as those described in 
the application presented in the below chap. 5 of this book

Rule 11) The effect of cascade control on the GERM efficiency. Among GERMs reviewed and tested under a WCVV modelling 
framework, the most significant are those of [G(P)n] type, whose effectiveness nearly linearly increases with the number (n) 
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of buffering reactions (Figure 4-30, and Figure 4-26). Due to their simple structure such GERM-s are the most suitable to 
construct very complex GRC-s. On the next place, the [G(PP)n] are also favorites, by presenting a more pronounced regulatory 
efficiency due to the used dimeric TF-s (that is PP) in an optimized small amount. As previously discussed (Rules 1, 2, 3, 5,7), the 
most effective are the GERM-s with a cascade control of the expression, by means of buffering reactions applied at both key gene 
G, and mRNA (M) catalyst level, that is of type [G(P)n;M(P)n1] (Figure 4-7). [21-24,78,185] in-silico proved the superiority of 
the [G(P)n;M(P)n1] gene expression regulatory modules. The conclusions are the followings: 

(I).- The very rapid buffering reactions, such as:

G + P <===> GP+ P <===> GPP ……<===> GPn

M + P <===> MP+ P <===> MPP ……<===> MPn

have been proved to be very effective regulatory elements, by quickly adjusting the active/inactive G/GP/GPP/GPn or M/
MP/MPP/MPn species level ratios, thus efficiently coping with the perturbations.

(II).- Numerical tests revealed that the P.I.-s of some simple GERM-s increase in the approximate order:

[G(P)0] (0 regulatory element) <  [G(P)1] (1 regulatory element) < [G(P)1;M(P)1] (2 regulatory elements) < [G(PP)2] (3 
regulatory elements),<…. [G(P)n;M(P)m] (n+m regulatory elements),  etc.

Roughly, the obtained improvement of P.I.–s (Table 4-3) per regulatory element is of ca. 1.3 (under WCVV modelling 
framework), while the same improvement is of ca. 2.5 under the classical (inadequate, and unlikely) WCCV modelling framework 
[21,24,78,107,174-176,189]. It clearly appears that the WCVV modelling framework is more realistic, the default WCCV approach 
tending to over-estimate the P.I.-s, and to distort the GERM-s regulatory properties (see chap. 4.2.1, chap. 4.2.1.3, and Figure 
4-12, and Figure 4-13).”

 The book main objectives
To elaborate such a HSMDM dynamic model, the engineering analysis cycle of a biological process includes several steps 

as schematically represented in (Figure 4-8), that is: experimental lab-scale investigations, followed by the math (kinetic) 
modelling, and the numerical analysis of the biological process. Once validated, such a dynamic (structured or apparent/global) 
model will be used to optimize/control the FBR or SCR industrial bioreactor operation. If inconsistencies occur between the 
recorded data vs. model predictions, then an intermediate step is required to update (with a certain frequency) the biological 
process model. 

Although complicated and often over-parameterized, dynamic deterministic ODE models with continuous variables of 
CCM-s or GRC-s have a significant number of advantages, being able to reproduce in detail, by numerical simulations, molecular 
interactions, continuous slow or rapid response of the cell to continuous exo / endogenous disturbances [20,24]. In addition, 
the use of ODE kinetic models has the advantage of being easily approachable from a numerical point of view, being flexible, 
easy to extend and suitable to be characterized using nonlinear systems theory tools [73], by taking into account properties of 
the control system, that is: dynamics, direct and reverse control loops, and optimality. And, most importantly, such a CCM-GRC 
WCVV modelling approach by means of ODE kinetic models by also accounting the cell variable volume under the isotonic 
constraint, allows the use of powerful tools, namely numerical algorithms and the classical (bio)chemical engineering modelling 
concepts summarized in (Figure 4-3, and Figure 4-4). The most important of these {issues (BCE1-BCE6), of chap. 4.1) used in 
the kinetic modeling of (bio)chemical, or biological processes are mentioned above and by Maria [21-24,60,178].

An extended discussion of the (bio-)chemical engineering concepts, principles, and tools is given by [119,121,236].

 This work is aiming to prove the feasibility and advantage of using the relatively novel HSMDM concept by coupling extended 
CCM-based cell structured deterministic nano-scale models with the macro-scale state-variables of the analyzed bioreactor 
models. The resulted hybrid dynamic model was successfully used for engineering evaluations. Exemplifications are made for 
two case studies. Thus, the case study (no.1) in chap. 5 describes the way by which Maria and Luta [40] derived a lumped 
HSMDM able to simulate the dynamics of the mer-operon expression and self-regulation together with the dynamics of a  SCR-
TPFB bioreactor, using cloned E. coli cells (with variable mer-plasmid concentrations), aiming to optimize the performances 
of a bioreactor used for mercury uptake from wastewaters. The case study (no.2) in chap. 6 describes the way by which Maria 
[3,12] derived an extended HSMDM able to simulate the dynamics of the CCM key-species, and of the TRP-operon expression 
and self-
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Figure. 4-1: Simplified representation of the CCM pathway in E. coli of [4,42] (the“wild” cell including the PTS-system). “Fluxes characterizing the 
membranar transport [Metabolite(e) « Metabolite(c)] and the exchange with environment have been omitted from the plot. See [42] for details 
and explanations regarding the numbered reactions. Notations: [e]= environment; [c]=cytosol. Adapted from [42] with the courtesy of CABEQ Jl. 
The considered 72 metabolites, the stoichiometry of the 95 numbered reactions, and the net fluxes for specified conditions are given by Maria 
et al. [42]. The pink rectangle indicates the chemical node inducing glycolytic oscillations [39,59]. Notations , and denotes the feedback positive 
or negative regulatory loops respectively. GLC = glucose; F6P= fructose-6-phosphate; FDP = fructose-1,6-biphosphate; see the abbreviation 
list for species names; V1-V6 = lumped reaction rates indicated by Maria [3].” Species notations are explained in the abbreviation list of [3]. 

Chemical engineering modelling rules and concepts applied in Systems Biology and Bioinformatics, after [21-23].
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.  
Figure 4-2. Chemical engineering modelling rules and concepts applied in Systems Biology and Bioinformatics, after [21-23].

Figure 4-3: Biochemical engineering modelling rules and some concepts to be applied in Systems Biology and Bioinformatics, after [21-23]. 
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Figure 4-4: Some kinetic expressions used by the ODE type dynamic models of the cell genetic circuits (GRC, GERM), or of the cell metabolic biochemical 

reactions [21-24,107]. Adaptation after [23].
 

 
Figure 4-5:Example of linked GERM-s to form GRC-s (genetic switches here). See the reviews of Maria [21-24,60,74,107,178].
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Figure 4-7: The library of Maria [21-24] with lumped modular models to represent the GERM-s dynamics. Adapted from [23-24] with the courtesy of 
CABEQ Jl.„Simplified representations of some generic gene expression G/P regulatory modules (GERM) types following [24]. The horizontal arrows indicate 
reactions; vertical arrows indicate catalytic actions; absence of a substrate or product indicates an assumed concentration invariance of these species; Up-row: 
simplified representation of the gene expression model corresponding to [ G(P)n] regulatory module types. The transcriptional factor is the protein P itself, 
the selfregulation over the transcription and translation steps being lumped together. To improve the system homeostasis stability and self-regulation, despite 
of perturbations in nutrients Nut*, and metabolites Met*, or of internal cell changes, a very rapid buffering reaction G + P <===> GP(inactive) has been added. 
Middle-row . simplified representation of the gene expression model corresponding to a [ G(PP)n] regulatory module types. The transcriptional factor is the 
dimmer PP. Down -row . simplified representation of the gene expression model corresponding to [ G(P)1; M(PP)n] regulatory module types. The models 
account for the cascade control of the expression via the separate transcription and translation steps. Notations: G* = DNA gene encoding P*; M = mRNA; P, PP 

= allosteric effectors of the transcription/translation.”

Figure. 4-8: The engineering analysis cycle of a biological process: experimental labscale investigations, coupled with the math (kinetic) modelling, and 
the numericalanalysis of the biological process aiming to optimize the FBR industrial bioreactor operation. [The green cell] Simplified CCM reaction 
pathway in E. coli used in the hybridstructured model, adapted after [12,42,25]. It includes four linked reaction modules:[a] glycolysis; “[b] ATP recovery 
system (the pink rectangle, including the synthesis of adenosin co-metabolites ATP, ADP, AMP); [c] the TRP synthesis (the gray area), and the biomass 
[X] growth model. This reaction pathway has been used by Maria [3] to derive a hybrid FBR dynamic model for the TRP synthesis. Connection of the 
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TRP synthesis to glycolysis is realized through the PEP node. Notations: GLC(ex)= glucose in the cell environment. Species abbreviations are given 
in the abbreviations list of [3]. Species in parenthesis are not explicitly included in the glycolysis model. Italic letters denote the enzymes. Squares 
include notations of enzymatic reactions V1-V6 included in the glycolysis model. Adapted from [25,42] with the courtesy of CABEQ Jl, and completed 
according to the kinetic model of [42]. [Right-up] The scheme of a FBR. [Left-down] The optimal feeding-policy with GLC solution in the FBR, after [12].” 

 
Figure 4-9: Protein P synthesis – simplified representations of a generic GERM regulatory module (horizontal arrows indicate reactions; vertical arrows indicate 

catalytic actions; G = gene encoding P; M = mRNA; R = repressor; In = inducer; Met= metabolites). See reviews of Maria [21-24,60,74,107,178].
 

 

Figure 4-10: Abstract depiction of cellular physiology. Adapted from [183].
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Figure 4-11: The novel modelling framework of WCVV promoted by Maria [21-24,60,74,107].

improve the system homeostasis stability and self-regulation, despite of perturbations in nutrients Nut*, and metabolites Met*, or of internal cell changes, a very 
rapid buffering reaction G + P <===> GP(inactive) has been added. Middle-row . simplified representation of the gene expression model corresponding to a [ 
G(PP)n] regulatory module types. The transcriptional factor is the dimmer PP. Down -row . simplified representation of the gene expression modelcorresponding 
to [ G(P)1; M(PP)n] regulatory module types. The models account for the cascade control of the expression via the separate transcription and translation steps. 

Notations: G* = DNA gene encoding P*; M = mRNA; P, PP = allosteric effectors of the transcription/translation.

 

Figure 4-12. Comparison of WCCV vs. WCVV modelling approach in the case of a simple [G(P)1] - GERM [23,60,175,176].
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Figure 4-13. Comparison of the WCCV and WCVV modelling approach in the case of a simple G(P)1 gene expression regulatory module [23,60,175,176].
 

 

Figure 4-14: The exponential-like increase of the model size with the prediction accuracy [180].
 



Hybrid dynamic models linking cell-scale structured CCM pathways, genetic regulatory circuits GRC, 
and bioreactor state variables. Applications for solving bioengineering and bioinformatics problems 

Hybrid dynamic models linking cell-scale structured CCM pathways, genetic regulatory circuits GRC, 
and bioreactor state variables. Applications for solving bioengineering and bioinformatics problems 

049

 
Figure 4-15: Some guide-lines used in obtaining reduced dynamic models [29,64,67,78].

Figure 4-16: The role of gene expression regulatory modules (GERM) and of the genetic regulatory circuits (GRC) [21-24]. 
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Figure4-17: Around 2000 the human genome has been deciphered.
 

Figure 4-18: The hierarchical organization of a living cells [21-23].
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Figure 4-19: Reasons to use lumped models in description of cell metabolic processes.
 

 
 

Figure 4-20: First attempts to model the cell CCM, GRC-s are inspired from the electric circuit’s theory (the so-called A-cell [103,104].
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Figure 4-21:  Pioneers in modelling genetic regulatory circuits [73].

 
 

Figure 4-22: Some cell simulators: one of Boolean type: (left) [200]; (right) a mixed Boolean-continuous model concerning the iron metabolism in 
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mitochondria [194].
 

 
Figure 4-23: Part of the CCM in an eukaryotic cell. Source =

h t t p s : / / e n . w i k i p e d i a . o r g / w i k i / F i l e : M e t a b o l i c _ M e t r o _ M a p . s v g 

Figure 4-24: Some cell simulators of stochastic type (left)[102], and (right) of electric-circuit type [103,104].

https://en.wikipedia.org/wiki/File:Metabolic_Metro_Map.svg
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Figure 4-25: Importance of the lumped modular math modelling for the in-silico design of GMO-s by using HSMDM models [21-23]. 
 

 
Figure 4-26: Influence of the GERM’s number of effectors on some of their properties, i.e. the QSS recovering rate (top), and the amplitude / species 

recovering trajectory after a 10% dynamic perturbation in the [P]s [21-24,185].
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Figure 4-27: The effect of the mutual G/P mutual self-catalysis, and of the isotonicity in the case of a simple [G(P)1] gene expression regulatory module GERM 

[21-24,175,176]. Species QSS recovery after a 10% dynamic (impulselike) perturbation in [P]s. Notations:  = cell osmotic pressure; V = cell volume; T
= temperature; G = generic gene; P = the protein encoded by G; C(j) = cell species concentrations; „s” index = at QSS; „o” index = initial; = species P recovering 

time of its QSS, [P]s., with a 1% precision (i.e. 0.01).

 
Figure 4-28:  Several „simplified representations of a gene expression regulatory modules (GERM) [21-24]. Adapted from [24,107] with the courtesy of 
CABEQ Jl. Down-right. Simplified reaction scheme of a generic gene G expression, by using a regulatory module of [G(P)1] type. The model was used to 

exemplify the synthesis of a generic P protein in the E. coli cell by [24]. To improve the system homeostasis stability, that is quasi-invariance of key species 
concentrations (enzymes, proteins, metabolites), despite of perturbations in nutrients Nut*, and metabolites Met*, or of internal cell changes, a very rapid 
buffering reaction G(active) + P <===> GP(inactive) has been added. Horizontal arrows indicate reactions; vertical arrows indicate catalytic actions; G = 

active part of the gene encoding protein P; GP = inactive part of the gene encoding protein P; MetG, MetP = lumped DNA and protein precursor metabolites, 
respectively.” 
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Figure 4-29:  Protein P synthesis - simplified representations of a generic gene expression regulatory module (GERM). The horizontal arrows indicate 
reactions; vertical arrows indicate catalytic actions; absence of a substrate or product indicate an assumed concentration invariance of these species; G = gene 

encoding P; M = mRNA). The right structure corresponds to a [G(R)n ; M(R)n ] module type. Uprow: the simplified representation of the gene expression 
two-steps: transcription and translation (left), and (right) a simplified reaction schema of the gene expression [21,24]. The right model corresponds to a 
[G(R)n; M(R)n] GERM type. Center: (adapted from [24]): Protein P synthesis - simplified representation with a GERM self-regulated expression module 

of type [G(O)n; M(O)n]. Horizontal arrows indicate reactions; vertical arrows indicate catalytic actions; absence of a substrate or product indicate an 
assumed concentration invariance of these species; G = DNA gene encoding P; M = mRNA; O = allosteric effectors).Down-row: two types of GERM simplified 

representations for protein synthesis: [G(P)n] (left) and [G(PP)n] (right) [24]. 
 

 
 

Figure 4-30:  Influence of the number of effectors in a GERM on their regulatory performance indices P.I.-s[21-23].
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Figure 4-31:  Seeking for modelling the GRC regulatory properties (performance indices, P.I.–s [21].

 

 
 

Figure 4-32: Define some of the GERM regulatory performance indices P.I.-s [21].
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Figure 4-33:  The effect of a buffer reaction effector ( G+P ó GP ) on the [G(P)1] gene expression regulatory module dynamic efficiency [175,176,189].

 

 
 

Figure 4-34:  GERM model complexity reflected on its dynamic regulation efficiency [21,175,176]. 
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Figure 4-35:  Effect of the GERM model complexity on the GRC stationary performances (P.I.) of Table 1-3. The GRC includes 2 linked (through P1) gene 
expression modules, i.e. (structure ”1”) [G1(P1)1] + [G2(P2)1], vs. [G1(P1)1;M1(P1)1] + [G2(P2)1; M2(P2)1] (structure „”2”). The GRC structure no.”2”, of a 

higher complexity, reported better stationary and dynamic P.I.-s [78] 

Figure 4-36:  Effect of the TF level on the GERM efficiency [174,189]. Downright= the minimum (optimum) level of TF = P2P2 = P3P3 in a genetic switch case 
[189].
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Figure 4-37:  (left) E-CELL simulator of the CCM Tomita et al., 1999]; (right) CellML (JWS) cell metabolism dynamic or stationary simulation [49,100]. 

 
 

Figure 4-38:  Carbohydrate metabolism in E. coli [96,97]. The extended kinetic model of Edwards and Palson [4] was reduced by Maria et al. [42] to only 72 
keymetabolites, over 95 key-reactions.
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Figure 4-39: Flux balance analysis – the main objective of metabolic engineering, and an essential preliminary step in design GMO-s. [237]. 

 
 

Figure 4-40: (continuation) Flux balance analysis is working with matrix math models [188].
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Figure 4-41: (continuation) Solving a Flux balance analysis problem translates in (non)linear programming problem [238]. 

 

Figure 4-42: Some developed –omics databanks: KEGG [96,97]; JWS [49,100].
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Figure 4-43:  KEGG  databank  [96,97].

 
Figure 4-44: (continuation) KEGG databank [96,97].
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Figure 4-45:  Roche biochemical databank [134].

 

Figure 4-46: EcoCyc biochemical databank [95].
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Figure 4-47: Area where Systems Biology has been applied.

 
Figure 4-48:Experiment-modelling cycle to obtain math models in biochemical / metabolic engineering. Math formalization includes working with vectors 

and matrices.” [239]. 
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Figure 4-49: Protein homeostatic regulatory mechanisms no. 1-4, of type [G(P)0],[G(P)1], [ G(P)1;M(P)1], and [G(PP)2]. Horizontal arrows indicate 
reactions. Vertical arrows indicate that the component catalyzes the designated  Components above horizontal arrows indicate substrates. Adapted 

after[21-24].  
 

 

Figure 4-50: [A-C]: Steady-State trajectories of P, G, MetG and MetP vs. environmental b = NutG/NutP for the following GERM representations of (Figure 
4-49): (1)- [G(P)0]; (2)- [G(P)1]; (3)- [G(P)1;M(P)1]; and (4)- [G(PP)2]. See the nomenclature in (Figure 4-7). [D-E]: Dynamic Trajectories (2-5) of P and 
G after a 10% negative perturbation of [P]from [P]ns = 1000 nM, for GERM-s of type no. (1-4). At [G(P)1] curve no.1, [G] was set to 1 nM at the moment of 
perturbation. Nomonal QSS concentrations before the Pperturbation at an arbitrary t=100 min, are [MetG]ns = [MetP]ns = 10,000 nM, [P]ns =1000 nM, [G]ns = 

[GP]ns = 1/2 nM, [M]ns = [MP]ns = 1/2 nM.. Adapted after [21-24].
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Figure 4-51:Effect of the TF level (expressed proteins P2, P3 here) on the GERM efficiency [174,189].
 

 
Figure 4-52: Exemplification of the cell content ballast effect on the species recovering times to homeostasis, in the case of a [G(P)1] gene expression 

regulatory module. Gene G (top-right) and its encoding protein P (down-left) recovery trajectories after a –10% impulse perturbation in the [P]s = 1000 nM at 
t=0. Solid line trajectories correspond to a high ballast cell, while the dash line trajectories to a low ballast cell. The species concentrations in nM are given in 

the Table 2 of [176].
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Figure 4-53: (continued) Comparison of the WCCV vs. WCVV modelling approach in the case of a simple [G(P)1] gene expression regulatory module [60].

 

 

Figure 4-54:Comparison of the WCCV vs. WCVV modelling approach in the case of a simple [G(P)1] gene expression regulatory module [60].
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Figure 4-55:Effect of the GERM model complexity on the GRC dynamic performances (P.I.). The GRC includes 2 linked (through P1) gene expression modules, 
i.e. (structure”1”) [G1(P1)1] + [G2(P2)1], vs. [G1(P1)1; M1(P1)1] + [G2(P2)1; M2(P2)1] (structure „”2”). The GRC structure no.”2”, of a highercomplexity, 

reported better P.I.-s. After [78].

Figure 4-56: Effect of the GERM inter-connectivity, and of individual species functionsinto the cell on the GRC efficiency [78].
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Figure 4-57: (continued) Effect of the GERM inter-connectivity, and of individual species functions into the cell on the GRC efficiency [78].

 
Figure 4-58: ”Schema of a design genetic switch (GS): GERM modules 2 and 3, for G2 and G3 expression, are placed in a WCVV of a cell of equilibrated 

growth;the G1 expression (module 1) mimics the whole cell content replication; inducersI2 and I3 activate the G2 and G3 synthesis, respectively. (Notations: 
G1 = lumped genome; P1 = lumped proteome; MetG1, MetP1 = lumped metabolome used forthe synthesis of G1 and P1, respectively; NutP and NutG = 

lumped external nutrients; P2 and P3 = two individual proteins involved in the GS of the type=[G2(P2P2)1(P3P3)1] + [G3(P3P3)1G3(P2P2)1]G2 and G3 
= two individual genes involved in the GS; MetG2, MetG3, MetP2,MetP3 = individual metabolites involved in the GS; I2 and I3 = internal inducers for the G2 

and G3 expression, respectively; NutI2 and NutI3 = external stimuli responsible for the I2 and I3 synthesis; Å / Q = positive / negative regulatory loops; NutG 
and MetG are precursors of DNA (and mRNA); NutP and MetP are precursors for the production of amino-acids used in the protein synthesis (P1, P2,P3, 

P2P2, P3P3). The TF-s, of type P2P2 and P3P3 are kept at a minimum level.” 
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Figure 4-59: Equivalence of concepts, and rules to interconnect the Systems biology and the Bioinformatics. After [240].
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Figure 4-60:Some of the common rules used by the Bioinformatics [122].
Top: Example of a Multiple Sequence Alignment (MUSCLE format) analysis on human head louse species. These are

sequences being compared in a MUSCLE multiple sequence alignment (MSA). Each sequence name (leftmost column) is from
various louse species, while the sequences themselves are in the second column. Source =https://en.wikipedia.org/wiki/Bioinformatics#/media/

File:Muscle_alignment_view.png
Down-left: Interactions between proteins are frequently visualized and analyzed using networks. This network is made up of

protein–protein interactions from Treponema pallidum, the causative agent of syphilis and other diseases. Source =
https://en.wikipedia.org/wiki/Bioinformatics#/media/File:The_protein_interaction_network_of_Treponema_pallidum.png

Down-right: 3-dimensional protein structures such as this one are common subjects in bioinformatic analyses. Source =
https://en.wikipedia.org/wiki/Bioinformatics#/media/File:1kqf_opm.png 

 

 

Figure 5-1: Some applications of GRC models [21,24].
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Figure 5-2. Time-dependent mercury transfer between the E. coli cell and the three-phase fluidized bed bioreactor (TPFB), according to the proposed hybrid 

dynamic model HSMDM of Maria [1,2,40,63]. Enzymes concentrations in E. coli determines the apparent reaction rates in the bioreactor model (especially 
PT lumped permease, and PA lumped reductase), while the reactor state-variables (e.g. [Hg2+], nutrients) determine the cell metabolism, and mer-operon 

expression adaptation. E. coli cell model notations: The simplified GRC pathway of the mer-operon expression for the mercury ion uptake in E. coli cells 
includes 7 gene expression regulatory modules (GERM-s): 2 modules for mediated transport of Hg2+ into cytosol (catalysed by PT) and its reduction 
(catalysed by PA); 5 regulatory modules of mer operon expression including successive synthesis of PR (the transcriptional activator of other protein 

synthesis; its synthesis being triggered by the import of mercury ions, linked as Hg(SR)2 into the cell), lumped PT permease, PA reductase, and of the control 
protein PD. One additional regulatory module deals with the lumped proteome P and genome G replication into the cell (also mimicking the cell ”ballast”). The 
GRC is placed in a growing cell, by mimicking the homeostasis and cell response to stationary and dynamic perturbations in [Hg2+]env. The reductant NADPH 
and RSH are considered in excess in the cell. Notations: P = lumped proteome; G = lumped genome; NutG, NutP = lumped nutrients used for gene and protein 
synthesis; P• = proteins; G• = genes; RSH = low molecular mass cytosolic thiol redox buffer (such as glutathione); perpendicular arrows on the reaction path 
indicate the catalytic activation, repressing or inhibition actions; absence of a substrate or product indicates an assumed concentration invariance of these 

species; Å / Q positive or negative feedback regulatory loops. 

Figure 5-3: Simplified scheme of the three-phase fluidized bedreactor (TPFB). Notations: 1 ⎯ mercury ion fed solution including nutrients 
(C/saccharides, N/ureea,P/salts, mineral sources, pH-bufferadditives, anti-bodies, etc.); 2 ⎯iquid outlet; 3 ⎯ Hg vapor in airflow; 4 ⎯ 
sterile air input; 5 ⎯immobilized bacteria; 6 ⎯ air bubbles.The bioreactor performances depends on: suspended biomass concentration 
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and efficiency, andits porous support size, feed flowrate,inlet [Hg2+], nutrients,additives, aeration rate, pH, etc. In turn, the cell efficiency 
(mercury reduction rate) depends on the PT,PA enzimes concentration(dependent on the cell resourcesand environmental [Hg2+]). 

 
Figure 5-4: Case study of chap. 5 - In-silico design of a cloned E. coli with a maximized capacity of mercury uptake from wastewaters [1,2,40,63,241,242,243]. 
[Down-right] Prof. G. Maria and late Prof. W. Deckwer at the 2nd Croatian- German Conference on Enzyme Reaction Engineering, 21-24 Sept. 2005, Dubrovnik 

(Croatia), sharing oppinions about the bioprocess of mercury removal from wastewaters by using cultures of cloned E. coli cells. 

 
Figure 5-5: Three-phase fluidized bed reactor sensitivity related to the variations in the inlet [ +2L Hg ]in, leading to varia

tions of the following operating variables: outlet [ + 2L Hg ](up-left); outlet [ 0L Hg ](down-left); +2L Hg conversion (up-right); and outlet [ 0G Hg ](down-
right). Nominal conditions: [Gmer] = 3 nM; FL = 0.02 L min-1 ; biomass cX = 1 g L-1 ; particle size d p = 1 mm. Notation „in” refers to thebioreactor inlet. 
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Figure 5-6:Three-phase fluidized bed reactor sensitivity related to inlet liquid flow rate FL variations, leading to variations of: outlet [ +2L Hg ](up-left); outlet 
[ 0L Hg ](down-left); +2L Hg conversion (up-right); outlet [ 0G Hg ](down-right). Nominal conditions: [Gmer] = 3 nM; [ 2+L Hg ]in = 20 mg L-1; biomass X c = 1 

g L-1; particle size p d = 1 mm. 

 
Figure 5-7: Three-phase fluidized bed reactor sensitivity related to biomass concentration cX variations, leading to variations of: outlet [ +2L Hg ](up-left); 

outlet[ 0L Hg ](down-left); +2L Hg conversion (up-right); outlet [ 0G Hg ](down-right). Nominal conditions: [Gmer] = 3 nM; FL = 0.02 L min-1 ; [ 2+L Hg ]in = 
20 mg L-1;particle size p d = 1 mm.
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Figure 5-8. Three-phase fluidized bed reactor sensitivity related to particle size d p variations, leading to variations of: outlet [ +2 L Hg ](up-left); outlet [ 0 L Hg 
](down-left); +2 L Hg conversion (up-right); outlet mercury in the outlet-gas [ 0 G Hg ](down-right). Nominal conditions: [Gmer] = 3 nM; FL = 0.02 L min-1 ; [ 2+ 

L Hg ]in = 20 mg L-1; biomass cX = 1 g L-1 .
 
 

Figure 5-9:The reduced cell model, accounting for the mer-operon expression (4 GERM-s), coupled with 2 kinetic modules referring to the main enzymatic 
reactions. Adapted from [1,2,23,40].
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Figure 5-10:The nano-scale cellular enzymatic process in the immobilized E. coli bacteria: mer-operon (4 gene lumps) expression (Figure 5-9), and the main 

enzymatic reactions (mercury permeation, and its reduction). Adapted from [1,2,23].

Figure 5-11:The macroscopic model of the three-phase fluidized-bed bioreactor (TPFB) with suspended immobilized E. coli on pumice beads. The Michaelis-
Menten rate constants depend on the mer-plasmid level [1,2,40].
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Figure 5-12:The main characteristics of the E. coli (K-12 strain) used in the case study no. 1. Data from [95].

 
Figure. 5-13:Typical evolution of relevant species concentrations predicted by the E. coli cell model, after a “step” perturbation in the bioreactor 
inlet from [ + 2 env Hg ]s = 0.1 to 10 mM (ca. 2 mg/L), for the case of cell cloned with [Gmer]= 3 nM (___), or with [Gmer]= 140 nM (• • • • • ). The arrow 
indicates the quick and vigorous response of the two key mer-enzymes: PT = the mercury ions permease, and PA = the mercury ions reductase. 
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Figure. 5-14: [Left]. Dynamics of metallic mercury concentrations in the liquid and gas phases, and in the bioreactor outlet after a “step” perturbation in the 
reactor inletfrom [ +2L Hg ] = 0.1 mM to 100 mM (ca. 20 mg L-1), for immobilized cells on pumice granules under nominal conditions of Table 5-2. Comparison is 
made for the cases of cells cloned with [Gmer]= 67 nM (___), or with [Gmer]= 140 nM (• • • • •). The curves indexed by “1” denote predictions of the unstructured 
(apparent) reactor model (Table 5-1, Table 5-3), while curves indexed by “2” denote the predictions of the structured reactor model (including the cell model 

of Table 5-4). [Right]. Concentration dynamics of relevant mer-species inside the cell, and the
mercury reduction rate following the same “step” perturbation in the reactor inlet from[ 2+L Hg ] = 0.1 mM to 100 mM (ca. 20 mg L-1), for immobilized E. coli 

cells on pumice granules under nominal conditions of Table 5-2. Notation “E” denotes the
experimental curves of Philippidis et al.[244]. Adapted from [40].

 

 
 

Figure. 5-15:  The stationary reduction rate (rHg) of mercuric ions by E. coli cells for various inlet [Hg2L
+ ]. Comparison includes predictions of the structured extended HSMDM model (“2 ___”) vs. the Philippidis et al.[244-246] experimental curves (“E -----”) 

(diffusion free). The upper / lower (“Eup”, “Elow”) denote the confidence bounds of the experimental curves. Curves denoted by (“1 • • • • •”) are the
predictions of the unstructured bioreactor model (cap.5.5.5, Table 5-1 plus Table 5-3), with including the mass transport terms. Comparison is made for 

the E. coli cells cloned with mer-plasmids in the amount of [Gmer] = 3 nM (A), [Gmer] = 78 nM (B), and [Gmer] = 140 nM (C). Plots (D) display the predicted 
cytosolicconcentration of mer-reductase [PmerA] = [PA] for [Gmer] = 3 nM, and [Gmer] = 140 nM. 
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Figure 5-16. Dynamics of mercury concentrations in the liquid and gas phases after a “step” perturbation in the reactor inlet from [ +2 L Hg ] = 0.1 mM to 100 
mM (ca. 20 mg/L), for immobilized cells on pumice granules under nominal conditions of (Table 5-2). Comparison is made for the cases of cells cloned with 

[Gmer]= 67 nM (___), or with [Gmer]= 140 nM (• • • • •). The curves indexed by “1” denote predictions of
the unstructured (apparent) reactor model (Table 5-1, together with Table 5-3), while curves indexed by “2” denote the predictions of the structured HSMDM 

reactor model (including the cell model of Table 5-4). 

 
Figure 5-17: Concentration dynamics of relevant species, and mercury reduction rate following a “step” perturbation in the reactor inlet from [ +2 L Hg ] = 

0.1 mM to 100 mM (ca. 20 mg L-1), for immobilized E. coli cells on pumice granules under nominal conditions of (Table 5-2). Comparison is made for cloned 
cells with [Gmer] = 67 nM (67, ___), or with [Gmer] = 140 nM (140, • • • • • ) mer-plasmids. The curves indexed by “1” denote predictions of the unstructured 

(apparent) reactor model (Table 5-1, together with Table 5-3), while the curves indexed by “2” denote the predictions of the structured HSMDM reactor 
model (by also including the cell model of Table 5-4). Notation “E” denotes the experimental curves of Philippidis et al. [244-246]. 
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Figure 5-18: TPFB-2 bioreactor sensitivity to biomass [X] variations (under nominal conditions of Table  5-6), for the outlet [ +2L Hg ](up-left), outlet [ 0L Hg 
](down-left), +2L Hg conversion (up-right), and outlet [ 0G Hg ](down-right). Predictions of 1(---) PFOM, 2(:) MM1, and 3(__)PHM models. 

 

 

Figure 5-19: TPFB-2 bioreactor sensitivity to [ + 2in Hg ] variations (under nominal conditions of Table 5-6), for the outlet [ + 2L Hg ](up-left), outlet [ 
0L Hg ](down-left), +2L Hg conversion (up-right), and outlet [ 0G Hg ](down-right). Predictions of 1(---)PFOM, 2(:) MM1, and 3(__) PHM models. 
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Figure 5-20: TPFB-2 bioreactor sensitivity to particle size d p variations (under nominal conditions of Table 5-6), for the outlet [ +2L Hg ](up-left), outlet [ 0L 

Hg ](down-left), +2L Hg conversion (up-right), and outlet [ 0G Hg ](down-right).Predictions of 1(---) PFOM, 2(:) MM1, and 3(__) PHM models. 

Figure 5-21:TPFB-2 reactor sensitivity to inlet flow rate LF variations (under nominal conditions of Table 5-6), for the outlet [ +2L Hg ](up-left), 
outlet[ 0L Hg ](down-left), +2L Hg conversion (up-right), and outlet [ 0G Hg ](down-right). Predictions of 1(---) PFOM, 2(:) MM1, and 3(__) PHM models. 
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Figure 5-22: TPFB-2 reactor sensitivity to solid fraction εs variations (under nominal conditions of Table 5-6), for the outlet [ +2L Hg ](up-left), outlet[ 0L Hg 

](down-left), + 2L Hg conversion (up-right), and outlet [ 0G Hg ](down-right).Predictions of 1(---) PFOM, 2(:) MM1, and 3(__) PHM models

 

Figure 5-23: Predicted stationary mercury concentrations ( at the QSS of the TPFB-2), as ions in lq.,metal in liquid, and as metal vapours in gas, 
that is: [Hg2L+ ], [ Hg0L],and [ Hg0G], respectively. Predictions are made for the control parameter values of (Outline 5-1), that is for: various 
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biomass loads of biomass [X] (A); various inlet[ 2 HgL+ ]in (B); various particle sizes d p (C); various inlet liquid flow rate FL (D); or initial load of 
solid εs (E). Predictions are made by using the following unstructured models of the bioprocess kinetics: 1(---) PFOM; 2(:) MM1, and 3(__) PHM. 

 

Figure 6-1:Simplified scheme of a BR or a FBR used to conduct enzymatic or biological processes. In the BR operating mode, substrate(s), biocatalyst, and 
additives are initially loaded in the recommended amounts (concentrations). In the FBR operating mode, the substrate(s)/ biomass (immobilized or not), and 
additives (nutrients, pH-control substances) are continuously fed, following a certain (optimal) policy.” The vigorous medium oxygenation with sparged air or 

pure oxygen ensures the optimal growing conditions for the biomass (see details of Chen [268]). Source =
https://en.wikipedia.org/wiki/Bioreactor#/media/File:Bioreactor_principle.svg 

 
 

 
Figure 6-2: The simplified reaction schemes of glycolysis in E. coli used by Maria [25] to develop a kinetic model with including 9 (individual, or lumped 

species), participating to only 7 lumped reactions. The kinetic model also include the adenosin co-metabolites ATP, ADP, AMP reactions involved in the ATP 
recovering system (the top rectangle in the figure). Squares include notations of 
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enzymatic reactions of this model. Species in parenthesis are not explicitly included in the kinetic model. Italic letters denote the enzymes. Species oscilating 
concentrations in the white figures, correspond to the oscillating glycolysis conditions discussed by Maria [25,39,59,61,306]. Adapted from [25] with the 

courtesy of CABEQ Jl.

Figure 6-3: Simplified structured reaction pathway in E. coli for the glycolysis (after Maria [25]), and for the TRP synthesis (the gray area) (after Maria et al. [62]). 
This reaction pathway has been used by Maria et al. [58,62] to derive a TRP synthesis kinetic model. Connection of the TRP synthesis to glycolysis is realized 
through the PEP node [39,62]. The modular model structure also includes the synthesis of adenosin cometabolites ATP, ADP, AMP, as part of the ATP recovery 
system (the pink rectangle in the figure). Notations: GLC(ex)= glucose in the cell environment. Species abbreviations are given in the abbreviations list. Species in 
parenthesis are not explicitly included in the glycolysis model. Italic letters denote the enzymes. Squares include notations of enzymatic reactions V1-V6 included 
in the glycolysis model presented by Maria [3,12]. Adapted from Maria [25] with the courtesy of CABEQ Jl, and completed according to the Maria [3] kinetic model.” 

Figure 6-4:”Model-based simulated trajectories (____) for the glycolytic keyspecies (PYR, F6P, FDP, ATP, PEP) in the modified E. coli T5 strain for the FBR operated 
in two alternatives: (i) (2, black) optimal operation derived in this paper (variable fed [GLC], and feed flow-rate), and (ii). (1, blue), and the experimental 
data (•, blue) of Chen [268] recorded under nominal, not-optimal operating conditions of (Table 6-1), that is a constant fed [GLC], and feed flowrate. Species 

abbreviations are given in the abbreviations list.” Adapted from Maria andRenea [12].
 



Hybrid dynamic models linking cell-scale structured CCM pathways, genetic regulatory circuits GRC, 
and bioreactor state variables. Applications for solving bioengineering and bioinformatics problems 

086

 
Figure 6-5: Model-based simulated trajectories (____) for the key-species involved in the TRP-operon expression module (TRP, OR, MRNA, E) in the modified 

E. coli T5 strain for the FBR operated in two alternatives: (i) (2, black) optimal operation derived in this paper (variable fed [GLC], and feed flow-rate), and (ii) 
(1, blue), under nominal, not-optimal operating conditions of (Table 6-1), that is a constant fed [GLC], and feed flow-rate. Species abbreviations aregiven in 

the abbreviations list.” Adapted from Maria and Renea [12].

Figure 6-6: Top curves. ”The time step-wise optimal feeding policy (2, black) of the GLC concentration in the bioreactor, feed cglc j(j = 1,…,5 time arcs), derived by Maria 
and Renea [12] (variable fed [GLC], and feed flow-rate). Comparison is made with the experimental FBR (1, blue) operated under the nominal (not-optimal) operating 
conditions of (Table 6-1), that is with a constant feed flow-rate, and with a constant GLC concentration in the feed. Both cases are using the same modified E. coli T5 
strain.Down-curves. Model-based simulated trajectories (____) of glucose (GLC) in the bioreactor bulk, for the FBR operated in two alternatives: (i) (2, black) optimal 
operation derived in this paper (variable fed [GLC], and variable feed flow-rate); (ii) (1, blue) trajectories, and the experimental data (•, blue) of Chen [268] derived 
under nominal, not-optimal operating conditions of (Table6-1), that is a constant fed [GLC], and a constant feed flow-rate [268].” Adapted from Maria and Renea [12]. 
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Figure 6-7:
(a) ”The time step-wise optimal policy of the feed flow-rate (FL), , FLj (j =1,…,5 time-arcs) in the bioreactor (____) for the FBR operated in two alternatives: (i) 
(2, black) optimal operation derived by Maria and Renea [12] (variable fed [GLC], and feed flow-rate); (ii) (1, blue) trajectories under nominal,not-optimal 

operation of (Table 6-1), that is a constant fed [GLC], and feed flowrate [268]. Both cases are using the same modified E. coli T5 strain of Chen [268].
(b)  The liquid volume (VL) dynamics in two alternatives: (i) of using the optimal policy of the feed flow-rate (FL) in the bioreactor (2, black) derived by Maria 
and Renea [12], or (ii) of using (1, blue) the non-optimally operated FBR under the nominal conditions of (Table 6-1), that is with a constant fed [GLC] and feed 

flow-rate [268].
(c) The model-based predictions of the biomass (X) concentration in the same FBR with using the modified E. coli T5 strain of Chen [268], but operated in two 

alternatives: (i) (2, black) optimal operation derived by Maria and Renea [12] (i.e. variable fed [GLC], and feed flow-rate), or (ii) (1, blue) simulations, and 
the experimental data (•, blue) of Chen [268] under nominal, not-optimal operating conditions of (Table 6-1), that is a constant fed [GLC], and feed flow-rate 

[268].”Adapted from Maria and Renea [12]. 
 

 
Figure 6-8: Model-based predictions of the truptophan (Trp) concentration dynamics in the same FBR of Chen [268] with using the modified E. coli T5strain, 
but operated in two alternatives: (i) (2, black) optimal operation derived byMaria and Renea [12] (i.e. variable fed [GLC], and feed flow-rate), or (ii) (1, blue)
simulations [3], and the experimental data (•, blue) of Chen [268] for the nominal,not-optimal operating conditions of (Table 6-1), that is a constant fed [GLC], 

and feed flow-rate.” Adapted from Maria and Renea [12].
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Figure 7-1:The CCM reduced pathway of Escherichia coli after the model of Edwards and Palsson [4]. This ’wild’ strain includes the PTS-system for GLC import 
from the environment. “Fluxes characterizing the membranar transport ( ) and the exchange with environment( ) have been omitted from the plot ([e]=

environment; [c]= cytosol). This is the case of fluxes number: 2(ACALD), 6(AC,H), 9(AKG,H), 14(CO2), 17(LAC,H), 19(ETOH,H), 20(AC), 21(ACALD), 
22(AKG), 23(CO2), 24(ETOH), 25(FOR), 26(FRU), 27(FUM), 28(GLC), 29(GLN), 30(GLU), 31(H), 32(H2O), 33(LAC), 34(MAL), 35(NH4), 36(O2), 
37(Pi), 38(PYR), 39(SUCC), 42(FOR,H), 43(FOR), 47(FUM,H), 52(GLN,ATP), 56(GLU,H), 58(H2O), 63(MAL,H), 69(NH4), 70(O2), 78(Pi,H), 84(PYR,H), 
87(SUCC,2H), 88(SUCC,H). Notations: (Met) = diffusional transport of metabolite Met; (Met,H) =transport of metabolite Met via proton symport; (Met,ATP) 
= transport of metaboliteMet via ABC system. Species abbreviations are explained in the Table 7-1. Adapted from [42] with the courtesy of CABEQ Jl. The 
considered 72 metabolites, the stoichiometry of the 95 numbered reactions, and the net fluxes for specified conditions are given by Maria et al. [42].” 

Figure 7-2: The Pareto-optimal front of succinate and biomass simultaneousmaximum production in the GMO E. coli cells (___), and location of 
somerestricted gene-knockout mutants predicted by Burgard et al. [310] (O, underanaerobic conditions), and by the present study for (•,under aerobic 
conditions). Numbers in the parenthesis denote the removed genes from the wild-type CCM E. coli cell. Adapted from [42] with the courtesy ofCABEQ Jl. 
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Figure 7-3: ”Flux distribution (absolute values in mmol/gDW/hr) in the wild-type E. coli for succinate and biomass production maximization (with only the 
basic CONSTR constraints of eq.(5)): (a) LP solution ( = 2.90⋅10-12, =16.3840, L = 1.36⋅10-3); (b) NLP solution ( = 2.97⋅10-12, = 16.3842, L= 1.07⋅10-5, DF=94). 
The reversible succinate-to-fumarate transformation (fluxes#44 and #89) is the main reaction responsible for succinate productionmaximization. Adapted from 

[42] with the courtesy of CABEQ Jl.”
 

Figure 7-4: LP objective function ( ) ”for succinate and biomass production maximization of various mutants of E. coli when successively removing one single 
gene (from gene #1 to gene #95). (a) Imposed basic constraints CONSTR of eq.(5); (b) Imposed basic constraints CONSTR of eq.(5), and the supplementary 

constraints v28 = v50 and . Adapted from [42] with the courtesy of CABEQ Jl.” 
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Figure 7-5: ”Example of optimal solutions with the MINLP for succinate ( )(b), and for biomass ( )(a) production maximization of various mutants of E. coli 
when successively removing one single gene (from gene #1 to gene #95; DF =95, under the basic CONSTR of eq.(5)). The MINLP Lagrange objective function 
(L)(c) is displayed together with the logarithm of base ten of constraint index (d). All inequality constraints are met ( ).The reversible succinate-to-fumarate 

transformation (fluxes #44 and #89) is the
main reaction responsible for succinate production maximization. Adapted from [42] with the courtesy of CABEQJl.”
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Figure 7-6:”Example of local solution - flux distribution (absolute values in mmol/gDW/hr) of two E. coli mutants for succinate and biomass production 

maximization (MINLP solution with the basic CONSTR of eq.(5), DF = 95), that is: (a) gene #1 knockout ( = -2.90⋅10-12, = -16.384, L = 2.41⋅10-5); (b) gene 
#10 knockout ( = -2.90⋅10-12, = -16.384, L = 2.21⋅10-5). The reversible succinate-to-fumarate transformation (fluxes #44 and #89) is the main reaction 

responsible for succinate production maximization. Units are in mmol/gDW/hr, and in g-biomass/gDW/hr for biomass formation. Adapted from [42] with the 
courtesy of CABEQ Jl.” 

Figure 7-7: Carbohydrate metabolism in E. coli wild-strain [96]. The reduced model of Edwards and Palson [4] includes 72 metabolites, and 95 reactions.
Adapted after [23].

 

Figure 7-8: [left] Carbohydrate metabolism (CCM) reaction pathway in the E.coli wild-strain, used by Edwards and Palson [4] to construct their kinetic model. 
[right] The Pareto-front of simultaneously maximum biomass and SUCC production given by GMO with knockout genes obtained by Maria et al. [42]. The numbers 
indicate the removed genes from the CCM (Table 7-2). The removed genes correspond to the cut (removed) reactions in the CCM schemes of the left side. 
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Figure 7-9: The phases and data utilized in generating a metabolic reconstruction (that is a GMO). The genome-scale metabolic reconstruction process 
can be summarized in four major phases, each of the latter phases building off the previous one. The fifth phase is use of the complete reconstruction for 

ractical purposes (see ’Uses of Metabolic Models’ of Orth et al. [339]).Characteristic of the reconstruction process is the iterative refinement of reconstruction 
content that is driven by experimental data and occurs in phases 2to4. For each phase, specific data types are necessary and these range from highthroughput 

data types, e.g., metabolomics, to detailed studies characterizing individual components, e.g., biochemical data for a particular reaction. For example, the 
genome annotation can provide a parts list of a cell, while genetic data can provide information about the contribution of each gene product toward a 

phenotype when removed or mutated. The GMO generated from each reconstruction phase can be utilized and applied to examine a growing number of 
questions with the final product having the broadest applications. Adapted after [339]. Source: https://journals.asm.org/doi/10.1128/ecosalplus.10.2.1 

 

 
Figure 8-1: The simplified CCM schemes used by Niklas et al. [227] to evaluate the cell main metabolic 

fluxes of interest, under dynamic conditions. Notations: PPP = pentose phosphate pathway; TCA = tricarboxylic acid; ETC= electron transport chain, OP =oxidative 
phosphorylation, Carbo carbohydrates: Glc = glucose, Gal = galactose, Lac =lactate, Pyr= pyruvate, G6P = glucose 6-phosphate, P5P = pentose 5-phosphate, F6P 

=fructose 6-phosphate, GAP = glyceraldehyde 3-phosphate, AcC = acetyl coenzyme A, Cit =
citrate, AKG = alpha-ketoglutarate, SuC = succinyl coenzyme A, Fum = fumarate, Mal =malate, OAA = oxaloacetate, ATP = adenosine triphosphate, ATP(OP) ATP 
from oxidative phosphorylation, ATP(wOP) = ATP without oxidative phosphorylation, ATPtot = total ATP,ATPexc = ATP in excess, NADH = nicotinamide adenine 
dinucleotide, FADH2 = flavin adenine dinucleotide. Standard abbreviations are used for the amino acids. Indices: m =mitochondrial, ex = extracellular.5 8.2 

https://journals.asm.org/doi/10.1128/ecosalplus.10.2.1
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Chap. 5. Case study no. 1: The use of a hybrid WCVV-GRC 
structured kinetic model to optimize a SCR-TPFB bioreactor 
used for mercury uptake from wastewaters by immobilized 
E. coli cells cloned with mer-plasmids.

5.1.       Symbols used in the chap. 4

”aG - G-L specific interfacial area

aL - L-G specific interfacial area (identical to aG)

aS - L-S specific interfacial area

Aj - atomic (molecular) mass of species j

a, b - rate constants in the Hill-type kinetic expression

cJ - species j concentration

DJ - diffusivity of species j in a certain phase

D -cell content dilution rate (i.e. cell-volume

logarithmic growing rate)

db - bubble average diameter

dp - particle diameter

dr - reactor diameter

F - feed flow rate

FL - Liquid feed flow-rate

g - gravitational acceleration

[HgL
2+] -Concentration of the mercury ions in the liquid

(bulk) phase of the bioreactor

Km - Michaelis-Menten constants

kg - G-L mass transfer coefficient (on gas side)

kh - Henry constant

kl - L-G mass transfer coefficient (on liquid side)

ks - L-S mass transfer coefficient (on liquid side)

k - rate constants

nH - Hill-coefficient

nPD, nPR - partial orders of reaction

n j - number of moles of species j

ns - number of species in the cell

N A- Avogadro number

p - overall pressure
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p j - partial pressure of species j

 - Reynolds number (liquid)

Rg - universal gas constant

rj - species j reaction rate

 - Schmidt number (liquid) 

Sh = ( ksdp ) / DS,L - Sherwood number

T - temperature

t - time

tC- cell-cycle time

uG - gas superficial velocity

uL - liquid superficial velocity

V - volume

v M- maximum reaction rate

X - Biomass in the bioreactor

YJ -molar ratio of species j to the rest of species in themixture

 Greeks

,α ω  - stoichiometric coefficients

,β ψ  -constants used in evaluation of particle

effectiveness in Table 5-8

ε  G - volume fraction of the gas in the bed

ε  L - volume fraction of the liquid in the bed

ε  p  - particle porosity

ε  s - volume fraction of particles in the bed

Φ  - optimisation objective function

φ  - Thiele modulus

ϕ  C - Carman shape factor (Trambouze et al., 1988)

η  j - effectiveness factor of reaction j

µ L - dynamic viscosity of the liquid

ρ  - density

π  - osmotic pressure

σ  - interfacial tension

∑ L - power dissipated per unit mass of liquid

τ p  - particle tortuosity 

Superscript

* - saturation

Index

app - apparent
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cell - referring to the E. coli cell

cyt - cytoplasma

ef - effective

env - environment

G - referring to gas, or at G-L interface

in - inlet

L - referring to liquid, or at the L-G interface

max - maximum

o - initial

p - particle

ref - reference value

s -referring to particle, or at liquid (L) – solid (S)

interface, or referring to the steady-state

trans - referring to the transport

Abbreviations

G-L - gas-liquid

G• - gene

Gmer - mer plasmids generating mer operons into the cell

GmerX (or GX) - mer genes (X = R,T,A,D)

GRC - genetic regulatory circuit

HSMDM - hybrid structured modular dynamic (kinetic)

models

L-S - liquid-solid

MetG, MetP - metabolites

M-M Michaelis Menten

NADPH - nicotinamide adenine dinucleotide phosphate

NutG, NutP - nutrients

P• - protein

PmerX - mer proteins

QSS - quasi-steady-state

RSH - compounds including thiol redox groups

S - substrate

SCR - Semi-continuous reactor

TF - transcription factor

TPFB - three-phase fluidized bioreactor

WCVV - variable volume whole-cell

X-biomass

[.]–Concentration
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The chapter purpose
This chapter exemplifies the use of a complex HSMDM to solve an engineering problem at an industrial pilot scale, that is 

the use of a complex cell WCVV structured kinetic model of the mer-operon GRC expression (Figure 5-2) in a HSMDM model to 
optimize a pilot-scale SCR-TPFB bioreactor (Figure 5-3)

used for mercury uptake from wastewaters by immobilized E. coli cells cloned with mer-plasmids. The developed HSMDM 
dynamic model is linking the cell-scale model part (including the dynamics of the nano-scale state variables/species) to the 
biological reactor macro-scale state variables for improving the both model prediction quality and its validity range. Eventually, 
the HSMDM model was used to in-silico design a GMO (i.e. an E. coli cloned with mer-plasmids in a degree to be determined) for 
improving its capacity for mercury uptake from wastewaters (Figure 5-4).

The cell dynamic model of the E. coli cloned bacterium is able to simulate the self-control of the GRC responsible for the mer-
operon expression, and to predict: 

a)	 the influence of the TPFB bioreactor control variables [such as, the feed flow-rate (FL), the mercury ions concentration 
[HgL

2+ ]in in the feeding liquid], and of the biomass concentration in the bioreactor [X];

b)	 the influence of various bioreactor running parameters [such as, the size of the solid porous particles (dp) of pumice 
on which the biomass is immobilized; the concentration [Gmer] of the mer-plasmides used in the cloned E. coli cells) on the 
bioreactor performance in uptake the mercury ions from wastewaters and in eliminating them as mercury vapours by the 
continuously sparged air into the reactor [1,2,40,63,241-243].

This HSMDM dynamic model is a worthy example of applying WCVV models, and the GERM-s properties (P.I.-s) described 
in the chap. 4 to adequately represent a complex modular GRC-s for the mer-operon expression in gramnegative bacteria (such 
as E. coli cells). The structured GRC-WCVV model was proposed by Maria [1,2] to reproduce the dynamics of the mer-operon 
expression in Gram-negative bacteria (E. coli, Pseudomonas sp.) to uptake the mercury ions from wastewaters under various 
environmental conditions. The model was constructed and validated by using the Philippidis et al. [244-246] experimental data, 
and the Barkay et al. [247] information on the mer-operon expression characteristics. Later, this cellular GRC model was included 
in a HSMDM dynamic model of the SCR-TPFB bioreactor by Maria et al. [40,63] in order to simulate its dynamics over a wide 
range of operating conditions, that is: FL = [0.01-0.04] L/min.; [HgL

(2+)n]in = [10-40] mg/L; [X] =[250-1000] mg/L; dp = [1-4] mm; 
[Gmer] = [3-140] nM. 

As evidenced by this application, the current trend in bioengineering is to use multi-layer (hybrid) models to extend the 
detailing degree of the developed bioreactor dynamic models, by also including the dynamics of the concerned cell key-species 
metabolism. Exemplification is made by coupling an unstructured dynamic model of a TPFB, used for mercury uptake from 
wastewaters by immobilized E. coli cells, with a cell simulator of the GRC controlling the mercuric ion reduction in the bacteria 
cytosol. The obtained results reported a significant improvement in the model prediction quality (ca. 3-12% in state variables, 
and up to 40% in reduction rate vs. experimental information) and in the detailing degree [i.e. simulation of 26+3 (cell+bulk) vs. 
only 3 (bulk) variables dynamics]. The major advantages of the hybrid model come from the possibility to predict the bacteria 
metabolism adaptation to environmental changes over several cell generations, and also the effect of cloning cells with certain 
plasmids to modify its behaviour under stationary or perturbed conditions. 

Basically, this chapther no. 5 exemplifies the possibility to couple an unstructured TPFB dynamic model with macro-scale 
state variables [248] used for mercury uptake by immobilized E. coli cells on pumice millimetric size support, with a structured 
E. coli cell model of Maria [1,2]. The advantage of using such a hybrid (bi-level) modelling approach is related to the improvement 
of the prediction accuracy of the reactor performance / state variable dynamics, and of the prediction of the bacteria metabolism 
adaptation to environmental ‘step’-like changes in the environmental mercury content [ HgL

2+]env through the modelled cell 
GRC related to the mer-operon expression, and by mimicking the whole-cell growth under balanced conditions. If promising, 
such an approach can support the idea of (i) improving the quality of process monitoring (control), and (ii) in-silico design 
cloned E. coli with an increased content of mer-plasmids. And all these by using complex HSMDM dynamic model of increased 
predictive power. The investigation is also supported by the tremendous improvement in the computing power over the last 
decades, and by the continuous expansion of the available information from cellular bio-omics databanks, and by steady efforts 
necessary to elaborate detailed cellular numerical simulators. Exemplifications of such modular GRC models used for the 
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in-silico design of GMO of industrial use includes several published case studies by Maria [23] (Figure 5-1). Due to the cell 
metabolism complexity, and existence of both cell-level control parameters, together with the bioreactor macro-level control 
variables, in-silico optimization of an industrial bioprocess by using GMO–s often translated in a multi-objective optimization 
problem [3,12,40,42,59,107], difficult to be solved by using common numerical algorithms. A couple of case studies exemplify 
the own positive experience with of using HSMDM including cell structured models of CCM, and of various GRC-s for optimizing 
industrial bioreactors, or for design of some GMO–s for improving certain bioprocesses of practical interest are presented by 
Maria [3,12,23,40,42,58,62]. 

Mercury ion reduction in bacteria cells – the apparent kinetics
”Bacteria resistance to mercury is one of the most studied metallic-ion uptake and release process (see the review of Barkay et 

al. [247]) due to its immediate largescale application for mercury removal from industrial wastewaters [248-250]. The bacteria 
response to the presence of toxic mercuric ions in the environment is apparently surprising. Instead of building carbon- 
and energy-intensive disposal ’devices’ into the cell (like chelate-compounds) to ’neutralize’ the cytosolic mercury and 
thus maintaining a tolerable level, a simpler and more efficient defending system is used. The metallic ions are catalytically 
reduced to the volatile metal,  less toxic and easily removable outside the cell (as in the liquid environment of the TPFB) 
by simple cell membrane diffusion. Such a process involves less cell resources and is favoured by the large content (millimolar 
concentrations) of low molecular-mass thiol redox buffers (RSH) able to bond and transport in cytosol as Hg(SR)2, and of 
NAD(P)H reductants able to convert it into neutral metal .(see the overall reactions of (Table 5-1). A genetic regulatory circuit 
(GRC) responsible for the involved mer operon expression controls the whole process, by including seven genes of individual 
expression levels of 7 encoded proteins, of which expression is induced and adjusted according to the level of mercury Hg(SR)2, 
and other metabolites into cytosol (Figure 5-2). The whole process is tightly cross- and self-regulated to hinder the import 
of large amounts of mercury into the cell, which eventually might lead to the blockage of cell resources (RSH, NADPH, key-
metabolites, and key- proteins), thus compromising the whole cell metabolism. 

While the role of each mer-gene and mer-protein in the mercury ion reduction process is generally known, not all the 
regulatory loops of the mer-operon expression are perfectly understood, and the way by which the cell adapts itself to variations 
of mercuric ion concentrations  .in the environmen. Philippidis et al. [244-246] proposed a reduced apparent (un-structured) 
kinetic model, of Michaelis-Menten (M-M) type, to quickly simulate the main steps of mercury uptake by E. coli, that is: the 
membranar transport of environmental  into the cell (of rt rate) and its reduction (rP rate, see Table 5-1). To highlight 
the slowest process step, separate experiments have been conducted with cultures of intact cells or ’permeabilized’ cells (with 
a more permeable cell membrane to metallic ionic species). The results clearly showed that membranar permeation is the 
rate controlling step, being of one order of magnitude slower than the cytosolic mercuric ion reduction. Identification of rate 
constants of the two main reactions for cloned E. coli cells with an increasingly copynumbers of mer-plasmids, in the range of 
[Gmer] = 3-140 nM, comparatively to [Gmer] = 1-2 nM (for wild-types of E. coli) reveals the following aspects (Table 5-1):

a)	 The rate constants are strongly dependent on the mer-plasmid (genes) level into the cloned cells of E. coli, the reaction 
mechanism being more complex than those suggested by the two apparent reaction rates (rt andrP ) of Philippidis et al. [244-
246]

b)	 Such reduced kinetic models can approximately represent the overall mercury uptake in cells and the steady-state 
process efficiency, being useful for the bioprocess scale-up engineering calculations [248].

c)	 The unstructured models can not represent the mer-GRC response to various inducers, the cell response to stationary or 
dynamic perturbations in the mercury level ( HgL

2+=  ) in the bioreactor liquid-phase, and in its constant feeding. Also, the 
apparent M-M kinetic model cannot explain and simulate/predict the self-regulation of the whole transport-reduction process, 
and how the mer-gene expression is connected to the cell volume growth and the cell content replication;

d)	 The cellular uptake process may be improved by increasing the merpermease content into the cell, up to a limit of ca. 
[Gmer] = 80 nM mer plasmids [244-246], higher than the permeation rate remains unchanged, thus preventing exhaustion of 
the cell metabolic resources. From the same reason, the cell regulatory system maintains an upper limit for the membranar 
transport of environmental into the cell (rt ) irrespectively to the concentration in the environment, the cytosolic 

concentration never exceeding a 3500-5000 nM level. 
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To model these unsolved aspects, an extended structured cell model has been developed by Maria [1,2], of a WCVV type 
(see chap. 4), by including a GRC of 7 GERM-s linked by following the rules described in the chap. 4, and by accounting the few 
experimental information of Philippidis et al. [244-246], and of Barkay et al. [247]. The derived GRC to simulate the mer-operon 
expression, and the process self-control at a molecular level under isothermal and isotonic conditions.”

The TPFB bioreactor model and its nominal operating conditions
„To exemplify the construction of the bi-level HSMDM structured model for the apprached mercury removal process, the 

TPFB bioreactor of Deckwer et al. [248] was approached. The main characteristics and the nominal operating conditions of this 
TPFB bioreactor under a semi-continuous (SCR) operation are

presented in the (Table 5-2). As a first step in the engineering analysis of this TPFB bioreactor, it is important to emphasize, 
by using the model-based numerical simulations, its mercury removal performances under variate operating conditions. Thus 
the most influential factors on the mercury uptake efficiency are pointed-out and ranked for further operating decisions. The 
used lab-scale TPFB bioreactor of (Figure 5-3, and Figure 5-4, upright) includes a resistant E. coli cell culture. The bioreactor is 
completely

automated being able to maintain its control parameters of (Table 5-2) at their optimal set-point, by ensuring a constant 
pH, temperature, a constant inlet feed flow-rate, and inlet mercury concentration Hg in, a constant sparkling air inlet feed flow-
rate, and a constant concentration of nutrients used as C/N/P source for the biomass optimal growth. Initially, to study this 
bioprocess, Deckwer et al. [248] used E. coli bacteria immobilized on alginate beads, but further tests have been extended by 
using porous pumice granules of 0.9 mm to 4 mm diameter. The pumice carrier checked in the present paper is particularly 
attractive, the carrier exhibiting a high BET area and porosity, a large pore size (even higher than 10 µ m), thus allowing a good 
diffusion of the substrate (mercuric ions) to the cells from inside the support. The operating conditions are tightly controlled, 
that is the liquid flow rate, the aeration rate (pO2), pH, and the temperature required by an equilibrated bacteria growth (Table 
5-2). The sufficient supplied oxygen guarantees a good cell metabolism, and a high content of cytosolic NADPH necessary for 
mercury reduction. Beside, the continuously bubbling air plays also the role of volatile metallic mercury carrier, by removing it 
from the liquid system. Eventually, the mercury vapours from the air leaving the system are condensed

and recovered [248]. A background pollution of ca. 100 nM is considered in the input water (that is ca. 0.02 mg L-1, which 
is smaller than the metabolic regulation threshold of 0.05 mg L-1), thus maintaining active the mer-operon into the E. coli cell. 
The biomass content of the support is variable (ca. 0.6-3 gX/L, according to [248,251], but a quasi-constant level of ca. 1 gX/L 
can be maintained by employing a purge/renewal system for the solid particles. At an industrial-scale, when treating polluted 
waters, the outlet gas (air) from the bioreactor, containing the volatile metallic mercury, is passed through an adsorption 
device, or through a desublimator system allowing the recover of metallic mercury [252]. To simulate the (semi-)continuous 
TPFB bioreactor performance, a dynamic ideal model was considered [253,254], by assuming homogeneous (perfectly mixed) 
liquid and gas phases, and an uniform distribution of the solid particles (of uniform characteristics) in the G-L fluidized bed. By 
accounting for only the apparent mercury uptake rate ( rapp ) by the immobilized bacteria (of concentration cX in Table 5-1) in 
the spherical solid carrier (of ε s), the mercury mass balance in the liquid and gas phases are presented in the (Table 5-3). The 
TPFB reactor dynamic model includes terms referring to the mass balance in the bulk (liquid, L) phase, the gas phase (G), the 
interphase L-G transport of the volatile mercury, and the bioprocess inside the solid particles The former one, 
also includes the diffusional resistance of the substrate (mercury ions) / product (dissolved metallic mercury) transport through 
the pumice support pores. More specifically, the mercury dfferential mass balance in the TPFB given in (Table 5-3) includes the 
following terms:

a)	 The apparent mercury reduction rate, evaluated at the solid interface;

b)	 The substrate (that is S = HgL
2+= ) diffusional transport in the particle, expressed by the effectiveness factor (η ) 

evaluated using the Thiele modulus for a Michaelis-Menten type reaction [33], the effective diffusivity (DS,ef ) accounting for the 
molecular diffusion (DSL), the particle porosity ( ε p ) and the tortuosity (τ  ) (other resistances being neglected [255];

c)	 The apparent rate rj,app was evaluated from solving (on every time-increment) the quasi-steady-state equality of mass 
fluxes at the solid-liquid (S-L) external interface (also including the external diffusion coefficient ksas [256]
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d)	 The liquid-to-gas transport rate rtrans of the metallic mercury ( 0
LHg to 0

GHg ) , evaluated from the quasi-steady-state equality 
of mass fluxes atbubbles interface, by accounting for the mass transfer coefficients kLaL (on the liquid film side; experimental 
value adopted), and kGAG (on the gas film side; value from application of the Sharma’s relationship given by Trambouze et al. 
[254]. The resulted hybrid dynamic model of (Table 5-3), with the apparent M-M linetics of (Table 5-1) allows simulating the 
transient operating conditions of the TPFB bioreactor by using an apparent Michaelis-Menten kinetics of Philippidis et al. [244-
246]. 

This apparent model of (Figure 5-11) can only give a rough idea on the bioreactor dynamics, but it is unable to describe 
the biomass adaptation to environmental changes, that is variations in the both inlet feed flow-rate and inlet mercury load in 
the influent. To offer a prediction to such engineering requirements, a structured kinetic model of the mercury uptake in the E. 
coli bacteria at a cellular level is necessary. The next chapter describes the WCVV structured HSMDM cell model proposed by 
Maria [1,2] to simulate the dynamics of the mer-operon expression self-regulation in the wild, or modified E. coli under various 
environmental (bioreactor operating) conditions. By using the reactor model and the apparent Michaelis-Menten kinetics of 
Table 5-1, the TPFB dynamics has been simulated under nominal operating

conditions of Table 5-2, but every time varying one operating parameter, that is:

a)	 The inlet [HgL
2+]in concentration from the background pollution level (0.02 mg L-1) to successively 1, 5, or 10 mg L-1 

levels (Figure 5-5);

b)	 The inlet liquid flow rate FL of 0.01, 0.02, and 0.04 L/min (Figure 5-6)

c)	 The biomass load cX on the solid support taken as 0.1, 0.25, 1.0 gX/L(referred to the liquid volume) for a constant 
fraction of the solid in the reactor (Figure 5-7)

d)	 The use of particle average diameter d p of 1 mm, or 4 mm respectively (Figure 5-8).

The results of these TPFB simulations over ca. 50 min. running time reveal that the liquid residence time in the reactor 
(related to the inlet liquid flow rate, FL ) and the biomass content (cX ) are the most influential operating parameters, being 
directly responsible for the realised mercury uptake conversion. For instance, by doubling the feed flow rate (from 0.02 to 0.04 
L min-1), the uptake conversion can be reduced with ca. 5%. The particle size is also important, an increase in the average d p 
leading to a higher resistance to the diffusional transport in pores and to a particle effectiveness diminishment (from 0.51 for 
dp = 1 mm to 0.15 for d p = 4 mm under nominal conditions). On the other hand, the biomass average load in the reactor can be 
adjusted by employing a continuous purge-renewal system of the solid particles. The mercury content in the input flow, [HgL

2+ ]
in in the range of 1-40 mg/L, has a significant influence on the mercury content of the output gas (Figure 5-5). As further proved, 
this last parameter is also of tremendous

importance for adaptation of bacteria metabolism when using wild or cloned cells with an increased copynumbers of mer-
plasmids.”

 E.coli cell structured dynamic model for mercury uptake, and its use to optimize the TPFB bioreactor
Generalities on the proposed extended HSMDM model

A first approach of this bioprocess/bioreactor modelling is those of Maria [1,2]. ”The resulted hybrid dynamic model of 
(Table 5-3), with the apparent M-M kinetics of (Table 5-1) allows simulating the transient operating conditions of the TPFB 
bioreactor, but of a prediction quality very approximate about the

bioreactor dynamics. The main drawback of this TPFB apparent model is coming from its inability to describe the biomass 
adaptation to environmental changes, that is variations in the both inlet feed flow-rate and inlet mercury load in the influent. And, 
self-understood this rough model can give no information about the dynamics of the inner cell species related to the mer-operon 
expression. To offer a prediction to such engineering requirements, a structured kinetic model of the mercury uptake in the E. coli 
bacteria at a cellular level is necessary. The next chapter describes the WCVV structured cell model proposed by Maria [1,2,40] 
to simulate the dynamics of the mer-operon expression self-regulation under various environmental conditions. This model was 
constructed and validated by using the experimental data of Philippidis et al. [244-246], and the experimental information of 
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Barkay et al.[247] on the mer-operon characteristics. The WCVV cell model was built-up by accounting the GERM-s library, their 
P.I.-s, and the linking rules presented in the chap. 4. The proposed E. coli cell model by Maria [1,2,40] includes the GRC

responsible for the control of the mer-operon expression and for the whole process of mercury ions removal. The proposed 
GRC includes 4 lumped genes (denoted by GR, GT, GA, GD in (Figure 5-2, Figure 5-3, Figure 5-4, Figure 5-9) of individual 
expression levels induced and adjusted according to the level of mercury and other metabolites into cytosol. The whole process 
is tightly cross- and self-regulated to hinder the import of large amounts of mercury into the cell, which eventually might lead 
to the blockage of cell resources (RSH, NADPH, other metabolites, and proteins), thus compromising the whole cell metabolism.

The GRC model includes four GERM-s of simple but effective [G(PP)1] type (see the discussion of chap. 4) as follows (see 
Figure 5-10):

a)	 a GERM to regulate the Hg2+ transport across the cellular membrane, mediated by three proteins (PmerP, PmerT, and 
PmerC) from the periplasmatic space, considered as a lumped permease PT in the model. Phillippidis et al. [244-246] found 
this transport step as being energy-dependent and the rate-determining step for the whole mercury uptake process. Once the 
mercuric ion complex arrives in the cytosol, thiol redox buffers (such as glutathione of millimolar concentrations) form a dithiol 
derivative Hg(SR)2 . Instantly, the GT lumped gene expression is induced by the regulatory protein PR, and easily ‘smoothed’ by 
the large ‘ballast’ effect of the proteome lump P. (see rule 6 of chap. 4.5).

b)	 a GERM to control the expression of the PR protein that induces and controls the whole mer-operon expression in the 
presence of cytosolic Hg2+ (even if they are present in traces, that is low nM concentrations). This GERM acts as an amplifier of the 
mer-expression leading to a quick (over ca. 30 s) cell response by starting the mer-enzymes production. The encoding GR gene 
expression to obtain PR is controlled by the protein PD, present in small amounts into the cell.

c)	 a GERM to control the expression of PA enzyme responsible for the Hg(SR)2 (that is ) reduction to metallic mercury 
( ) into cytosol (relatively non-toxic for the cell, easily removable through membranar diffusion into the bioreactor bulk 
liquid-phase. From here, metallic mercury( 0

LHg  ) is continuously removed by the sparged air as mercury vapours ( 0
GHg ), to be 

later recovered. The encoding GA gene expression is induced and controlled by the PT protein.

d)	 a GERM controlling the protein PD synthesis. This protein has a complex role, by maintaining a certain level of GR 
expression even when the mercury is absent in the cytosol [247].

e)	 a GERM controlling the replication of the lumped cell proteome (P) and genome (G) (of concentrations 107 nM, and 
4500 nM, respectively) in the immobilized E. coli cells. These data are based on the Ecocyc [95] databank (Figure 5-12), thus 
mimicking the cell ’ballast’ effect on the cell genes expression, and the all considered reactions. The need to include the cell 
content lump (the so-called ’cell ballast’) in the WCVV model is legitimate by the possibility offered by such a structured cell 
model to reproduce the smoothing effect of perturbations leading to more realistic transient times (comparing to a cell with a 
‘sparing’ content), the synchronized response to certain inducers, and the ‘secondary perturbation’ effect transmitted via the 
cell volume to which all cell components contribute { see eq. (3,5,6) of chap. 4, and the discussion of Maria [21,23,175-176] }. 

In total, the GRC dynamic model describing the mer-operon expression includes only 26 individual or lumped cellular species 
involved in 33 reactions (Figure 5-2, and Figure 5-10). The structured cell WCVV model is presented in the (Table 5-4). The cell 
model is coupled with the SCR –TPFB dynamic model

(Table 5-3) through the , rj, app linked to the rj(cj,s) occuring inside cell. The WCVV cell model includes not only the reactions 
and the dynamics of the mer- GRC, but also the enzymatic reactions directly responsible for the environmental mercury  
(also denoted by ) import into the cell as , and for its reduction to cytosolic metallic mercury in cloned E. coli cells. All 
reactions in the cell model of (Table 5-4) are considered elementary, excepting some of them for which extended experimental 
information exists, that

is [1,2,40]

a)	 a Michaelis-Menten rate expression for the mercuric ion permeation through the membrane into the cell

b)	 a Michaelis-Menten rate expression for the mercuric ion reduction in cytosol 
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c)	 a Hill type quick induction of the GR expression that can rapidly initiate the production of permease PT (through the 
control protein PR) when mercuric ions are present in large amounts.

d)	 Dimmerization reactions of TF-s are considered to be much rapid than the enzyme synthesis, while equal concentrations 
of active gene (G) and inactive (GPP) forms of the generic gene G are considered at homeostasis to maximize the GERM efficiency 
(see chap. 4.3-4.5) (Figure 5-2, and Figure 5-10).

e)	 The lumped proteome P, present in a large amount, is included in all gene expression rates, thus leading to more realistic 
evaluation of the GERM regulatory efficiency indices P.I.-s (chap. 4.3, 4.4) [21,23,174,189]. 

f)	 The model rate constants are estimated from solving the cell stationary mass balances for nominal concentrations of 
observable species (eqn.(8) of chap. 4), but also from optimizing the GERM regulatory indices (eqn.(10) of chap. 4.3), for instance 
by adjusting the optimum TF level of gene expression to get the minimum recovering times after a 10% dynamic perturbation in 
the key species, and smallest sensitivities of the homeostatic levels vs. external perturbations (see chap. 4.3-4.4 for an extended 
discussion). 

The E. coli cell characteristics and the considered cell key-species homeostatic concentrations used in the rate constants 
estimation are given in (Table 5-5). Exceptions are the Michaelis-Menten rate constants for the mercury transport and its 
reduction in cytosol adopted from the Phillipidis et al.[244-246] kinetic data. Thus, the M-M rate constants depends on the 
amount of [Gmer] plasmids in the cloned E. coli cells (Figure 5-10, and Figure 5-11). Simple correlations are used to include this 
essential aspect in the model. As extensively discussed in the chap. 4, such a cell WCVV structured model presents a large number 
of advantages, being able to: (1).- Simulate the cell metabolism adaptation when the environmental mercury level changes. Such 
a reconfiguration of the levels of mer-genes and mer proteins is presented in the (Figure 5-13) as a step response after a ‚step’-
like perturbation in the mercury level from  (ca. 2 mg/L), in a cloned E. coli cell with mer-plasmids 
of [Gmer]= 140nM, compared to a cell cloned with only [Gmer]= 3 nM. The transient state toward the cell new homeostasis of 
adapted mer-gene/protein levels stretches over 15- 20 cell cycles (of ca. 0.5 h each) as long as the environment perturbation is 
maintained. Clearly, an E. coli cell with a higher content of mer-plasmids reacts much strongly to the perturbation, by quickly 
starting to produce the enzymes responsibles for the mercury removal. (2).- Because the Hg2+ reduction rate constants are 
dependent on the mer-plasmid level into the cell, the WCVV GRC model can predict the maximum level of mer-plasmids that 
can be added to the cell genome for improving its mercury uptaking rate (and capacity) without exhausting the internal cell 
resources, thus putting in danger the cell survival. Consequently, it follows that this cell model allows the in-silico design of 
modified E. coli cloned with a suitable amount of mer-plasmids to improve its possibility of cleaning wastewaters by improving 
the mercury uptaking capacity. As an example, in the (Figure 5-14) are presented the cell key-component stationary levels, 
and concentration of mercury in the bioreactor bulk-phase for two GMOs: one cloned with 67 nM, and another one cloned 
with 140 nM. Simulations of Maria and Luta [40] revealed that as the mer-plasmids level is increasing, as the mercury uptake 
capacity in increasing. However, an upper limit exists (around 140 nM) over which the cell resources will be exhausted, putting 
its metabolism in danger. (3).- By coupling the structured cell model of (Table 5-4) with the three-phase continuous bioreactor 
model of Table 5-3 (with immobilized E. coli cells on pumice beads; see also the bioreactor model in the Figure 5-11), Maria et al. 
[40,63] have been able to determine the optimal operating policies of the bioreactor in relationship to the culture of cloned cells. 
Similar studies are reported by [63,241,242].

Extended HSMDM model structure
“To model the mercury uptake by E. coli bacteria at a cellular level, Maria [1,2] proposed a WCVV (chap. 4.2, 4.2.1) 

structured model that reproduces the dynamics of the mer-operon expression under various environmental conditions. 
The model was constructed and validated by using the Philippidis et al. [244-246] experimental data, and the Barkay 
et al.[247] information on the mer-operon characteristics. The proposed GRC, of modular construction, includes seven 
GERM-s placed in an E. coli cell of known characteristics (size, cell cycle, copynumbers of all individual or groups of 
components; EcoCyc databank [95]). The whole-cell approach allows predicting the dynamic response of the involved 
mer-operon to perturbations by mimicking the cell growth and its response to external stimuli. The mer-GRC acts by adjusting the 
expression level of individual mergenes (self-regulation), but also by balancing the expression of related genes through various 
regulatory loops activated by certain exo-/endogeneous inducers. The basic unit of the construction is the semi-autonomous 
GERM (chap. 4.3) that control one gene expression [24,138,174]. To not complicate the GRC dynamic model, the GERM module 
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must include the minimum number of individual/lumped species/reactions necessary to adequately represent the experimental 
information. For instance, the gene expression general schema of (Figure 4-9-left) can be translated into a modular structure 
of reactions, more and more reduced depending on the GERM representation importance. Maria [24], and Yang et al.[228] 
proposed a classification of the GERM units that includes negative feedback regulatory loops and a cascade control (see chap. 
4.3), thus allowing application of the control theory principles to quantitatively evaluate the individual GERM and the whole GRC 
regulatory performance indices (P.I.-s, see chap. 4.4), such as: stationary efficiency to treat ‘step’-like perturbations in key species 
concentrations; dynamic efficiency to treat ‘impulse’-like perturbations (translated by the species recovering times of the steady-
state / homeostasis); responsiveness to stimuli (expressed by the transient times from one steady-state to a new one); species 
connectivity (expressed by a synchronised response to perturbations); system stability region and strength (see [21,146,174] for 
details). The GRC for mercury uptake in E. coli proposed by Maria [1,2] is schematically illustrated in (Figure 5-1), contains seven 
GERM-s, as follows: (i) a GERM to regulate the Hg2+ transport across the cellular membrane, mediated by a lumped permease PT, 
which is synthesized by the GT gene expression induced

by the regulatory protein PR. Once the mercuric ions arrive in the cytosol, thiol redox buffers (such as glutathione of 
millimolar concentrations) form a dithiol derivative Hg(SR)2 ; (ii) a GERM to control the synthesis of the PR protein that induces 
and controls the whole mer-operon expression in the presence of cytosolic Hg2+ (even in nM concentrations). This GERM acts 
as an amplifier of the mer expression leading to a quick (over ca. 30 s) cell response, by starting production of mer-enzymes. 
The gene GR expression to get PR is controlled by the protein PD, present in small amounts into the cell; (iii) a GERM to control 
the synthesis of PA reductase responsible for the Hg(SR)2 reduction to metallic mercury (relatively non-toxic for the cell, easily 
removable through membranar diffusion). The encoding gene GA expression is induced and controlled by the PT protein; (iv) a 
GERM controlling the protein PD synthesis, having the role of maintaining a certain GR expression level in the absence of mercury 
[247]; (v) a GERM controlling the replication of the lumped cell proteome (P) and genome (G) (of large concentrations), thus 
mimicking the cell ’ballast’ and ‘smoothing’ effect of perturbations on the other gene expressions and reactions of the cell; (vi) 
two reaction modules, characterizing the Hg2+ import into the cell (activated / saturated by the environmental Hg2+, mediated by 
PT and RSH), and its cytosolic reduction mediated by PR in the presence of the renewable co-enzyme NADPH (present in excess 
in the cell).

The WCVV model equations for the mercury uptake in E. coli, together with the general hypotheses of the WCVV model are 
presented in the (Table 5-4). Basically, the cell is considered an open system, of uniform content and negligible inner gradients. 
To not increase the number of parameters, the structured model includes GERM of simplest form (chap. 4.3; [24]) for all mer-
genes, by using dimeric TF-s (of Protein:Protein type) to increase the GERM regulatory efficiency, as experimentally proved 
by [21,80,189]. The resulted HSMDM model includes 26 individual or lumped cellular species and 33 reactions. All reactions 
are considered elementary, except some of them for which extended experimental information exists, that is Michaelis-Menten 
rate expressions for mercury permeation into the cell, and its reduction in cytosol. A Hill type induction of the GR expression 
is adopted to rapidly amplify the mer-operon expression when mercuric ions are present in significant amounts inside cell. 
Dimerization reactions of TF-s are considered to be much rapid than the enzyme synthesis, while equal concentrations of active 
(G(i)) and inactive (G(i):TFTF) forms of the generic gene G(i) are considered at homeostasis to maximize the GERM efficiency 
[21-24]. The homeostatic characteristics of E. coli cells (belonging to a uniform culture) from the reactor, and the adopted species 
concentrations are presented in (Table 5-5).

Phillippidis et al. [244-246] have proved, on an experimentally basis, that the membranar permeation step is the rate-
determining step for the mercury uptake by the bacteria, and they used cloned E. coli cells with a higher amount of mer plasmids 
(Gmer from 3 to 140 nM) to increase the content of mer-genes producing mer-enzymes responsible for the mercury uptake 
process. However, the increased mercury reduction efficiency is obtained up to a certain limit of mer-plasmids (with a mercury 
ions import controlled by the permease PT) to not exhaust the internal cell resources thus putting in danger the cell survival. When 
simulating the TPFB reactor performance (of nominal conditions given in the Table 5-2) by employing a classical unstructured 
reactor model (see chap. 5.5.5), the biomass adaptation to variable input loads is not accounted for, that is the maximum rates 
vm,t , vm,P, and the Michaelis inhibition constants Kmt , KmP, and KiP of (Table 5-1) are kept constant (eventually depending only 
on the Gmer plasmid level). In fact, vm,t and vm,P rate constants depend on the cell enzyme levels of PA (reductase) and PT 
(permease) (Figure 5-2), which vary during the bacteria adaptation in the bioreactor under stationary or transient conditions. 



Hybrid dynamic models linking cell-scale structured CCM pathways, genetic regulatory circuits GRC, 
and bioreactor state variables. Applications for solving bioengineering and bioinformatics problems 

Hybrid dynamic models linking cell-scale structured CCM pathways, genetic regulatory circuits GRC, 
and bioreactor state variables. Applications for solving bioengineering and bioinformatics problems 

0103

To solve this problem by also offering a more detailed and robust prediction on the system dynamics / cell metabolism evolution, 
the TPFB bioreactor and the mer-GRC of E. coli cell models are necessary to be coupled in a hybrid structured HSMDM model. The 
two linked differential models are solved together, by

applying a mutual exchange of input/output parameters , PT,PA} on every small time increment 
throughout the solution (integration) of the HSMDM model, as graphically represented in (Figure 5-2).

The solving rule involves successive integration steps with an adopted time-interval equal to the cell cycle (ca. 30 min), 
enough to obtain the steady-state of the TPFB reactor on every time-interval, as following: (i) The rule starts with solving the 
extended hybrid HSMDM E. coli cell model by using the known initial condition (the cell variables’ initial state, or those from the 
end of the previous integration cycle), and by considering the current concentration of   in the bioreactor liquid phase (the 
nutrients are considered in excess and of constant levels). Thus, the cell species dynamics over one cell cycle is obtained from 
solving the WCVV cellular model. (ii) Then, the TPFB reactor model is solved over the current time-interval by using the known 
initial conditions (i.e. the reactor state variables eventually from the end of the previous time-interval), and by considering the 
enzymes PT and PA concentrations resulted from the E. coli model solution. [PT] and [PA] are necessary for setting the maximum 
reaction rates = and in the reactor model. The biomass level on the support is taken constant in 
the simulated case study, but an additional mass balance can be easily added to the reactor model if necessary.

The procedure is repeated of a large number of times, over hundreds of cell cycles. For instance, (Figure 5-13) displays the E. 
coli cell adaptation after a ‘step’-like perturbation in the environmental  (that is in the bioreactor bulk-phase) from the 
background level of 0.1 µ M to 10 µ M (ca. 2 mg/L), for the

case of cell cloned with [Gmer]= 3 nM (full line), or with [Gmer]= 140 nM (dash line) mer-plasmids. The transient state 
toward the cell new homeostasis usually lies over 15-20 cell cycles as long as the environmental stationary perturbation is 
maintained. The simulated species dynamic trajectories in this (Figure 5-13) reveal a vigorous response of the cell mer-species 
(especially of PT, and PA) to the perturbation in the environmental  s (i.e. liquid bulk-phase).”

Fitting the extended HSMDM model parameters from experimental data
To overcome the high computational effort necessary to fit the large number of rate constants of this extended HSMDM 

model, and to increase their confidence and physical meaning, a three-step procedure was employed based on the available 
experimental data and additional information from literature, as

(a). Mass transport parameters of the TPFB reactor, that is interfacial partial transfer coefficients ( ksas , kLaL , kGaG), effective 
diffusivity (Def ), and particle effectiveness factor (η ) have been estimated by using the experimental data of Deckwer et al. 
[248], and based on common correlations from the chemical engineering literature (Table 5-3) evaluated for the specified reactor 
operating conditions of (Table 5-2). (b). Cell model parameters are estimated by using the Philippidis et al.[244-246] kinetic 
data obtained from separate batch experiments with not-cloned E. coli cells. By using the defined cell nominal characteristics of 
(Table 5-5) (some key notations are: tc = cell cycle time; , Vcyt,o = born cell volume; c X = biomass concentration in the bioreactor; 
P = cell lumped proteome; G = cell lumped genome; NutG, NutP = lumped nutrients for the G and P synthesis, respectively; 
[Gmer] = mer-plasmid levels. The stationary levels of the essential cell mer-proteins (PA, PR, PD), and for the involved TF-s 
(PRPR, PTPT, PAPA, PDPD) are taken from the literature data, and by maximizing the GERM-s regulatory efficiency P.I.-s (chap. 
4.3 (’rate constants estimation’), and chap. 4.4) [21,175,176]. The resulted rate constants of (Table 5-4) have been estimated for 
the most severe experimental conditions of  = 120 µ  M, and [Gmer] = 140 nM. The used first guess of Hill-induction 
rate constants ( nPD = 1, nPR = - 0.5, nH = 2, a = 3) have been adopted at values recommended in the literature, by similarity with 
the Hill-induction of gene expression in genetic switches (see the remarks included in Table 5-4), while the Michaelis-Menten 
rate constants of mercury membranar transport (r max,t , Kmt ), and its reduction rates’ constants ( r max,p, KmP, KiP ) have been kept 
at the fitted values of Philippidis et al.[244-246] (Table 5-1). The reference concentration CHg2cy,ref was adopted at the average 
cytosolic level of mercuric ions detected by Philippidis et al.[246]. During model estimation, the GERM regulatory indices have 
been kept at their optimized levels, which corespond to: (i) Equal concentrations of catalytically active/inactive forms [G(j)]s = 
[G(j)TFn]s adopted at steady-state to ensure GERM maximum regulatory efficiency vs. perturbations (i.e. smallest sensitivitiesof 
the homeostatic levels vs. external perturbations [21,24,185], and (cap.4.4); (ii) adjustable optimum [TF]s level (ca. 4 nM 
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here; Table 5-5) involved in the gene expressions to get the minimum recovering times after a dynamic perturbation in the key 
species [21,175,176,189] (chap. 4.3 (’rate constants estimation’), and chap. 4.4). Other adjustable parameters, such as the cell 
concentration in biomass (ccell ), are tuned to fit the experimental cellular mercury reduction rate of Philippidis et al.[244]. 

(c). The model validity is extended over a wider experimental range, by covering the input [ 2
LHg +  ] = 0-100 mg/L, and plasmid 

levels of [Gmer] = 3-140 nM. All these have been realised by adjusting some key-parameters of the extended HSMDM model, and 
by applying two concomitant fitting criteria, that is: (1) the cytosolic mercury reduction rate should fit the experimental values 
of Philippidis et al. [244-246], obtained for ‚permeabilized’ cells (i.e. Min model , see r8 of Table 5-4); (2) the 
TPFB reactor output cHg,out predicted by the unstructured model (Table 5-1, and Table 5-3, and 118 chap. 5.5.5) with using the 
Philippidis et al.[246] Michaelis-Menten parameters and the mass transfer terms, in order to fit with those of the structured (cell 
+ reactor) extended HSMDM model of (Table 5-3, and Table 5-4). The Hill parameter b=2a4 was adjusted by using the following 
approximate linear dependence on the inlet mercury load:

a =amin +(amax −amin)(cHg in, −cHg inmin,) / (cHg inmax, −cHg inmin,), 

(see the fitted values amin and amax in Table 5-4 – footnote d). The above simplified correlation tries to account for the 
influence of the environmental mercury on the induction characteristics of the mer-operon expression, that is a slow induction 
in the presence of low levels of 2

LHg +  inducer, and a sharp (sigmoidal) mer-operon expression response to high levels of [Hg
cyt

2+ ] 
inducer.

 When a certain saturation level is reached, the limited cell resources will impose ’flattening’ the metabolic mer-rates and the 
mer-protein levels, irrespectively to the increased amount of mercury in the environment [244-246]. 

The extended HSMDM model predictions are in a satisfactory agreement with the experimental data. Thus, the predictions 
of rHg by the extended HSMDM model of (Figure 5-15, A-C) (curves ’2’) roughly fall within the confidence band [‚Eup’, ‚Elow’] 
of the experimental curves (‚E’) of Philippidis et al.[244] for three different cloned cell cases (confidence curves being plotted 
by taking constant the reported maximum relative error of ca. 19%). The unstructured model (cap.5.5.5, Table 5-1 plus Table 
5-3) predictions (that is curves ’1’) reported apparent rHg of low adequacy, that is lower values due to the rough bioprocess 
representation by the M-M model, and due to the inclusion of the mass transport resistance between the three-phases in contact. 
The extended HSMDM model adequacy in terms of standard error ’Std’ / average observed value ’Obs’ ratio is evaluated for every 
cloned cell culture, leading to Std/Obs of 22.3%, 16.7%, 20.4%, 19.9%, 18.8% for [Gmer] levels of 3, 67, 78, 124, and 140 nM 
respectively, that is acceptable values comparable to the maximum experimental error. The structured vs. unstructured model 
outputs, in terms of outlet concentration of mercury (cHgout ) are also in a fair agreement (curves not display here), that is Std/
Obs values of 3.0%, 4.7%, 3.7%, and 12% for [Gmer] levels of 67, 78, 124, and 140 nM respectively. The model poor adequacy for 
the [Gmer] = 3 nM data set and low [ 2

LHg + ] in the environment (input) might be explained by the use of a less adapted E. coli 
cell than probably those studied by Phillipidis et al.[244], reflected by a smaller [PA] initial level of 600 nM (see the PA-curve in 
Figure 5-15-D). Once a higher level of Gmer-plasmids are introduced into the cell, and higher 2

LHg +  stimulus levels are present 
then, the cytosolic PA level is tripling.

The extended HSMDM structured model cellular rate constants (see the above point (b) , and Table 5-4) are in a good 
agreement with the reported data from literature, as remarked in the same (Table 5-4). The fitted rate constants multiplied 
by the reactant lead to reaction rates of the same order of magnitude with those reported in the literature for similar genetic 
processes, such as the TF (repressor monomer) dimerization, the TF binding to gene operator, or the mRNA (genes) synthesis 
reactions (Table 5-4) [1,2]. This observation sustains the physical meaning of some model parameters, thus increasing the 
HSMDM model robustness. 

 By extending the detailing degree of the bioreactor dynamic model at a cellular level, the resulted structured HSMDM model 
preserves the adequacy of the unstructured model, but adding the possibility to predict the cell species/fluxes dynamics. By 
offering details on the cell metabolism adaptation, on the ’intrinsic’ reduction rate, and possibilities to in-silico predict the 
modified cell response to various stimuli, such HSMDM models are clearly superior to the unstructured (apparent) bioreactor 
dynamic models. Eventually, extended HSMDM models worth the supplementary experimental and computational effort to 
derive them.” 
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Prediction of the bioreactor dynamics by using the extended HSMDM model compared to the 
unstructured model 

”Simulation of the TPFB bioreactor with the unstructured model (including only 3 bulk variables) of (Table 5-1 plus Table 
5-3) can predict the dynamics of the mercury uptake (3 bulk variables) by the biomass and the resulted metallic mercury transfer 
in the liquid and gas phase of the TPFB, as displayed in (Figure 5-16) after a ’step’-like perturbation in the Hg2+ level of the input 
flow (Figure 5-16, up-left) from traces of mercury (100 nM) up to 20 mg L-1 (curves ’1’). These predicted trajectories are close to 
those predicted by the structured HSMDM cell and reactor model (including 26 cellular + 3 bulk variables) (curves ’2’) for two 
types of cloned cell cases (with [Gmer] = 67 nM and [Gmer] = 140 nM). 

 The difference between the two process models (structured vs. unstructured) consist in the possibility to ’visualise’ the 
dynamics of the involved metabolic processes over several cell cycles as response to the external stimuli. As plotted in (Figure 
5-17), the structured bi-level model can predict the sharp increase in the mer-genes (GR, GT, GA, GD) levels and, the encoded 
mer-proteins (PR, PT, PA, PD), and cytosolic (’intrinsic’) reduction rate, as well as the cytosolic content of mercury for both 
cloned cell cultures following  a step-perturbation in the influent Hg2+ load (at at arbitrary time t = 9000 min). As the plots 
indicate, the transient period is of ca. 450 min (over the interval marked [9000, 9450] min on the time-axis), that is over ca. 15 
cell cycles. The cell levels of the involved mer-genes and of their encoded proteins are continuously changing, while the genetic 
information is transmitted from one cell generation to the next one. In accordance to its structure, the cell model can also predict 
the effect of increasing the content of some genes (or of removing them by gene knock-out technique, not approached here). 
Such modelling aspects are impossible to be represented by an overall / unstructured model. Moreover, the structured HSMDM 
model can predict the cell characteristics and operating conditions required to get an imposed efficiency of the bioreactor (not 
presented here; see an example for another process given by Maria and Renea [12] ).  

 One disadvantage of the structured HSMDM approach is related to the large amount of required experimental information 
on the cell metabolism and on the involved GRC necessary to adequately fit the model parameters. Another disadvantage is 
related to the required larger computational time (up to hours on a common PC using a ’stiff’ integrator) to get a reasonable 
prediction of the cell bioprocess evolution. However, this last constraint is not very strong for the process monitoring purposes, 
as long as most of industrial biological processes present a time constant much larger than the required simulation time. Beside, 
for quick control purposes, a reduced hybrid bi-level unstructured model can be used instead, being adjusted by using the 
experimental data. The next paragraph presents such a quick approach of the process control.” 

Optimization of the bioreactor dynamics by using a reduced unstructured hybrid model 
Even if much simpler, the unstructured (apparent) model of the bioprocess (Table 5-1), in more simple forms, coupled with 

those of the TPFB bioreactor (Table 5-3), is leading to a hybrid dynamic model, able to adequately predict the dynamics of the 
bioreactor main state-variables (that is 3 bulk variables, see Figure 5-17). This reduced hybrid unstructured model (HUDM) can 
adequately predict the dynamics of the mercury uptake by the biomass and the resulted metallic mercury transfer in the liquid 
and gas phase, as displayed in (Figure 5-16) after a ’step’-like perturbation in the Hg2+ level of the input flow (figure upleft) from 
traces of mercury (100 nM) up to 20 mg L-1 (curves ’1’). Of course, such a reduced model can not ’visualise’ the dynamics of the 
involved metabolic processes, and the cell adaptation as response to the external stimuli over several cell cycles. 

 As proved by Maria et al.[40,63], such a reduced HUDM model is enough adequate for a quick engineering evaluation of the 
bioreactor, that is: (1). A parametric sensitivity analysis, to highlight and rank the most influencial operating parameters of the 
bioreactor and, (2). A rough optimization of the bioreactor operation. This paragraph will briefly exemplify these capabilities of 
the HUDM model for the studied bioprocess and TPFB bioreactor of this chap. 5. (3). A quick control of the TPFB bioreactor by 
means of its main control variables: the biomass load [X] that is the amount of solid support with immobilized living cells in the 
bioreactor; the mercury concentration [Hg2+

L,in] in the inlet feed flow-rate, the inlet feed flow-rate (FL) (equal to the output flow-
rate); the millimeter solid suport size (dp); the solid fraction in the TPFB bioreactor (ε s). 

 The engineering analysis of this paragraph exemplify this concept of large flexibility, and easy handling of these reduced 
unstructured  TPFB models. Besides, such reduced dynamic hybrid models are easy to be up-dated from experimental data, 
because they include a small number of rate constants in the M-M (or Monod) based kinetic models.  Exemplification is made for 
a lab-scale TPFB-2 bioreactor using P. putida sp. immobilized on porous alginate granules. Even if, conceptually and functionally, 
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this TPFB-2 bioreactor does not differ much from the TPFB bioreactor (Table 5-2) analysed in the chap. 5.1-5.5, there are a 
couple of differences. The most importants refer to the biomass support (which is alginate beads, and not pumice), and to the 
range of tested solid fraction in the bioreactor ( up to 10%, as recommended in the literature [257] ). 

 The constructive features, and the nominal operating conditions of the TPFB-2 bioreactor are given in (Table 5-6).

 The approached TPFB-2 bioreactor, continuously operated, is that used by Deckwer et al.[248] to remove the mercury ions 
from wastewater at a bench-scale using P. putida sp. immobilized on porous alginate granules of 0.9 mm average diameter. A good 
diffusion of the substrate (mercuric ions) to bacteria is assumed to take place in the large support pores, while an equilibrated 
biomass metabolism is ensured by the added nutrients in the fed wastewater, and by a vigorous liquid aeration by continuously 
sparkling air. The liquid flow rate (or equivalently the liquid residence time), the aeration rate (in a high excess vs. metabolic 
requirements), pH, and temperature are tightly monitored to ensure a sustainable bioprocess. The biomass content of the 
support varies (up to 0.5-0.6 gX/g-support; [248]), but one assumes that a quasi-constant level can be maintained by employing 
a purge/renewal system of the ’biocatalyst’ particles (i.e. immobilized biomass). The outlet gas containing the volatile metallic 
mercury is passed through an adsorption device for recovering the mercury (a liquid metal). 

 To simulate the TPFB-2 bioreactor dynamics and performances, the dynamic ideal three-phases (G-L-S) model of (Table 
5-7) was adopted [253,254]. The solid particles with the immobilized biomass (of uniform characteristics) are considered 
uniformly distributed in the homogeneous liquid phase, due to the well-mixing conditions. The metallic mercury, resulting from 
its reduction in the bacteria cytosol, diffuses through the cell membrane in the bioreactor liquid phase, and then is transported 
as micro-drops (of ca. 5 µ m diameter [250]), or dissolved (solubility of 26 µ g L-1 at 26oC) to the gas-liquid interface from where 
it passes as vapours into the homogeneous gas phase. Low amounts of mercury bioaccumulate into bacteria, being neglected in 
the model. Mercury mass balance in the liquid and gas phases includes the following terms (Table 5-7): 

a)	 The diffusion equations to get species concentration profile inside the particle are replaced by the apparent mercury 
uptake rate (rapp ) by the immobilized bacteria in porous particles. Its value is evaluated by solving the quasi-steadystate equality 
of mass fluxes for an assumed kinetic model, by using the substrate concentration at the solid-liquid external interface 
of the carrier on every (small) time interval (Table 5-8). 

b)	 In the flux equality equation, the solid-liquid mass transfer coefficient ksas was experimentally evaluated by Deckwer et 
al.[248], even if common criteria relationships can also be employed (Table 5-7). 

c)	 The substrate transport diffusional resistance in the particles’ pores is expressed by an effectiveness factor (η ) 
evaluated by means of the Thiele modulus, particularized for a Michaelis-Menten rate expression (Table 5-8, [33]). The effective 
diffusivity (Def ), experimentally evaluated by Deckwer et al.[248], was used instead of those evaluated by means of common 
formulae from literature.  

d)	 The transport rate rtrans of the metallic mercury to the gas phase is evaluated from the quasi-steady-state equality of 
mass fluxes at bubbles interface (on every small-time interval) for known gas-liquid mass transfer coefficients (kLaLon liquid 
film side, and kGaGon gas film side). While KLaLwas experimentally evaluated by Deckwer et al.[248], k aG G results from application 
of criteria relationships, by averaging the gas volume fraction in the bed over three different formulae displayed in (Table 5-7; 
[254]).  

The adopted TPFB-2 reactor model allows simulating transient operating conditions of the bioreactor for a specified 
mercury reduction bioprocess kinetics. Three types of unstructured apparent kinetic models of M-M type from literature have 
been checked in the present analysis (Table 5-8), as followings:  

a)	 a pseudo-first-order kinetics (PFOM), valid for small substrate (mercuric ions) concentrations in the bioreactor liquid-
phase, that is lower than 1 mg/L. This situation corresponds to the reactor operation over a wide parametric range of [φ ref 
/10, 2φ ref ], where φ ref = Thiele modulus in (Table 5-8). This extremely simplified kinetic model advantage is coming from 
its simplicity, being easily to be used for the bioreactor design and control, by including only one adjustable rate constant (k). 

b)	 a simple Michaelis-Menten (M-M) kinetic model (MMM) of a first order inhibition with substrate (MM1= MMM), 
including two adjustable constants according to the biomass characteristics. The TPFB-2 reactor model solution can be easily 
obtained, even if additional calculations are necessary to derive the particle effectiveness and to solve the mass flux equality at 



Hybrid dynamic models linking cell-scale structured CCM pathways, genetic regulatory circuits GRC, 
and bioreactor state variables. Applications for solving bioengineering and bioinformatics problems 

Hybrid dynamic models linking cell-scale structured CCM pathways, genetic regulatory circuits GRC, 
and bioreactor state variables. Applications for solving bioengineering and bioinformatics problems 

0107

solid interface during the transient regime (Table 5-8). This model was proposed by Philippidis et al.[244-246] for mercury 
uptake in E. coli cells, the two rate constants being adjusted according to the merplasmid content in the cloned cells (in the range 
of 3-140 nM mer-plasmids, Table 5-1; [1,2]). 

c)	 an extended Michaelis-Menten kinetic model, of a better adequacy, including a second order inhibition with substrate 
(MM2= PHM), with three adjustable rate constants.” 

Here it is to notice that, even if simple M-M type kinetic models are used, solving the TPFB-2 reactor model requires a large 
computational effort to ensure a satisfactory precision when deriving the particle effectiveness, or when solving the mass flux 
equality at solid-liquid interface during the transient regimes (a nonlinear equation). To overcome these problems, the second 
order inhibition term was included as an adjustable parameter (that is the PHM kinetic model). According to the 
experimental information of Deckwer et al. [248] an average value of (phi) = 2 can be adopted for inlet substrate loads in the 
tested range of [1, 20] mg/L. The supplied oxygen in a large excess ensures an equilibrated cell metabolism and a high content 
of cytosolic NADPH necessary for mercury reduction. Traces of mercury in the fed wastewater maintain the mer-operon active 
into bacteria cell, as for the „wild” bacteria (E. coli, Pseudomonas sp.). 

Parametric sensitivity analysis of the TPFB-2. 
”The parametric sensitivity analysis of the TPFB-2 reactor employed for testing the mercury removal efficiency by using 

immobilized bacteria (E. coli, or Pseudomonas sp.) on a suitable porous support is an essential engineering analysis to be used in 
further process scale-up, optimization and control stages. The use of the reduced hybrid HUDM model with incl	 u d i n g 
an apparent M-M model is very suitable for such a quick engineering analysis of the bioreactor.  

 In the simulated case, the very effective bacteria metabolism allows an efficient reduction of the cytosolic mercury (92-99% 
conversion), excretion and transport of the resulted volatile metal to the gas phase for a wide range of pollutant loads in the 
wastewater. By keeping a reasonable small size of particles (1-2 mm), the most important control parameters appear to be the 
solid fraction and the feed flow rate of the reactor.  

 To determine the optimal operating conditions of the TPFB-2 reactor and its control possibilities, an essential analysis step 
is to determine the most important factors that influence the process in order to adjust the reactor efficiency. This can be easily 
done by the so-called sensitivity analysis (review of Varma et al.[231]) by evaluating the time-dependent sensitivity of a state 
variable  ’y’ with respect to a parameter φ , i.e. s (y ; φ ) = /y φ∂ ∂  (in absolute terms), or S (y ; φ ) = φ  

ref / y
ref ) s( y; φ ) (in relative 

terms; ’ref’ = the reference/nominal operating conditions in the parametric space). 

Five control parameters (φ ) of the TPFB-2 reactor are here considered, that is: (1) the biomass load [X] that is the amount 
of solid support with immobilized living cells in the bioreactor; (2) the mercury concentration  in the inlet feed flow-rate; 
(3) the millimeter solid suport size (dp);  (4) the inlet feed flow-rate (FL) (equal to the output flow-rate); (5) the solid fraction 
in the TPFB bioreactor (ε s).   For such a purpose, instead of using the extended structured HSMDM model, very computative, 
the reduced HUDM model with including unstructured bioprocess kinetics can be used for a quick approximate analysis of the 
TPFB-2 bioreactor. Of course, the reduced unstructured HUDM model can not give any information about the cell metabolism 
and mer-species adaptations over tents of cell cycles following the bioreactor dynamics. 

 In the present application, the global sensitivities of mercury uptake efficiency have been derived by using the finite difference 
method with repeated simulations of the TPFB-2 reactor for various values of the operating control variables, as listed in the 
below (Outline 5-1). It is self-understood that, bioreactor dynamic simulations are made by successively varying each of the 
control parameter, one after one, by keeping constants the other parameters at their nominal values listed in the same table.

The control parameters (φ ) have been varied around the set-point (the reference value ’ref’)  in the aprox. range of [φ ref /10, 
2φ ref ]. The sensitivity analysis of the TPFB-2 reactor was repeated by checking the all 3 unstructured kinetic models [PFOM, 
MM1, PHM=MM2]of (Table 5-8). The comparison of the simulation results allows to highlight the influence of the following 
control parameters on the bioreactor efficiency in removing the mercury from the wastewater, that is: (1) the biomass load cX in 
the reactor (Figure 5-18); (2) the mercury ion load in the fed wastewater Hg

in
2+ (Figure 5-19); (3) the average diameter dp of the 

solid particles playing the role of biomass support (Figure 5- 20); (4) the inlet flow rate F
L (Figure 5-21); (5) the solid fraction 

ε s in the reactor (Figure 5-22). Being in high excess, variation of aeration rate was not included in the analysis. The graphs 
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display the dynamic evolution of the mercury concentrations in the liquid and gas phases, for every analysed reactor operation 
case. Simulations reproduced the transient operating period of the TPFB-2 from its initial condition of mercury absence in all 
phases, until the reactor steady-state (QSS). The resulted global sensitivities of the mercury removal efficiency in the TPFB-2 are 
presented by Maria et al.[63]. This sensitivity analysis of the TPFB-2 bioreactor leads to the following conclusions: 

a)	 The most adequate PHM (MM2) apparent kinetic model is supposed to give accurate predictions of the process evolution 
and reactor performances. The differences between MM1 and MM2 predictions are negligible in all cases. By contrast, as expected, 
the PFOM very global kinetic model offers very weak, and very biased predictions, even for small substrate concentrations in the 
reactor (much smaller than 1 g/L). 

b)	 The same prediction discrepancy between the unstructured MM1 and MM2 models (from one side), and the PFOM 
global kinetic model (from the other side, see (Table 5-8) results from plotting the reactor steady-state concentrations in 
the gas-phase and liquid-phase for various operating parameters (Figure 5-23). As depicted, the PFOM predictions usually 
underestimate the TPFB-2 reactor removal efficiency.  

The weakness of PFOM unstructured global model is even more evident when predicting the bioreactor efficiency in (Figure 
5-23-A-E) for a wide range of the control variables, their predictions being very different from those predicted by the MM1-
MM2(PHM) models. Consequently, special precautions should be taken when a reduced unstructured kinetic model is used for 
a quick on-line control of the continuous bioreactor.” 

c)	 According to the MM2 (PHM) bioprocess apparent model, the most influential parameter for the mercury uptake 
efficiency in the TPFB-2 is the solid fraction (ε s ) in the reactor, its relative sensitivity being 115%/100% (all parametric 
sensitivities mentioned above are given by Maria et al.[63]). For instance, by doubling the solid fraction, the 
mercury uptake conversion can be increased with more than 5%. Of next importance are the inlet flow rate F

L (related to the 
liquid residence time), and the particle diameter dp controlling the diffusional resistance in pores and particle effectiveness). The 
use of solid particles larger than 2 mm is not recommended due to such reasons. The biomass load CX in the reactor, and the inlet 
mercury load Hg

in
2+ in the wastewater play a smaller role in the tested parameter ranges, because the sufficient amount of biomass 

can sustain the quasi-uniform process efficiency. In fact, in the tested parametric space, the mercury concentration within the 
reactor bulk-liquid [HgL

2+] never exceeds the critical load of 10-15 mg/L, value above which, mercury import into the cell is 
lowered by the genetic mer-regulatory circuit as proved experimentally by Philippidis et al.[244-246] for the E. coli cell case. 
Simulations of Maria [1,2] proved a quick adaptation of the cell metabolism for wild or cloned bacteria aiming at maintaining a 
quasi-uniform mercury removal efficiency within large loads of substrate. Of course, the unstructured, reduced HUDM model 
can not give any information about the cell metabolism and mer-species adaptations over tents of cell cycles following the 
bioreactor dynamics. Only the extended structured HSMDM model of the TPFB is able to provide this kind of information. 

d)	 In the bioreactor dynamic model (Table 5-7), the uptake rate (rapp ) is closer to the transport rate (rtrans ) at high 
conversions, thus indicating an efficient mercury removal from the liquid phase with an approximate rate of ca. 0.18 mg/L/min 
which, is much higher than those realized by the sorption in biomaterials removal method (that is 0.03 mg/L/min; [258]). 

 As a general conclusion, the use of hybrid unstructured Michaelis-Menten kinetic models coupled with the bioreactor 
model to obtain the reduced HUDM models, can offer interpretable results for a quick but very rough engineering evaluation 
of the TPFB bioreactor. The bias in conversion predicted by the very approximate linear PFOM model is up to 7-8% in the 
investigated parametric range, but can be higher for a wider range of operating conditions. Even if convenient for designing an 
adaptive controller of the process, such HUDM HUDM kinetic models are not recommended for the accurate bioprocess analysis, 
reactor design and optimization. The  extended structured HSMDM model, even if requiring more intensive experimental and 
computational steps to adjust its  parameters and to simulate the multi-phase system dynamics, is preferred in all the engineering 
analysis steps. That is because such a structured model can predict not only the bioreactor state-variables dynamics, but also 
the biomass adaptation to environmental changes, that is variations in the both inlet feed flowrate and inlet mercury load in the 
influent. Besides, such an extended WCVV structured cell model is able to simulate the dynamics of the mer-operon expression, 
and its self-regulation in the wild, or modified bacteria under various environmental (bioreactor operating) conditions. Such a 
structured HSMDM model can guide the engineers and biologists to obtain GMO bacteria of higher performances for the studied 
bioprocess. 
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Table 4-1: The concepts and the basic hypotheses of WCVV dynamic modelling framework in living cells of variable volume (adapted 
from [24]).
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a.         the role of the high cell-ballast in “smoothing” the perturbations of the cell homeostasis;

b.        the secondary perturbations transmitted via the cell volume;

c.     the system isotonicity constraint reveals that every inner primary perturbation in a key-species level (following a perturbation from the environment) is 
followed by a secondary one transmitted to the whole-cell via cell volume;

d.        allows comparing the regulatory efficiency of various types of GERM-s;

e.         allows a more realistic evaluation of GERM performance indices [33]

f.          allows studying the recovering/transient intervals between steady-states (homeostasis) after stationary perturbations; 

g.         allows studying conditions when the system homeostasis intrinsic stability is lost

h.        allows studying the self-regulatory properties after a dynamic/stationary perturbation, etc.  

i.          allows simulate with a higher accuracy the plasmid-level effects in cloned cells [11,12].

Table 4.2 : Some advantages when using the holistic WCVV framework when modelling [21-24,175,176].

 Table 4-3 : The regulatory efficiency performance indices P.I.-s proposed toevaluate the perturbation 
treatment efficiency by a generic GERM of (Figure4-9,or Figure 4-7) type, following the definitions of Maria [24]. Abbreviations: Min = 
to be minimized; Max = to be maximized. Note: k(syn) and k(decline) refers to the P→ →overall reaction. Notations: ’n’= nominal value; 
’s’ = stationary value; (*) 40 see eq. (11) and [185] for the monodromy matrix A calculation; λ (i) = i-th eigenvalues of the Jacobian 
matrix defined before eq.(9); A = monodromy matrix, defined by eq. (11); τ (j)= species ’j’ recovering time of 
its QSS-level, with an accepted tolerance (usually 1-5%); Nut= nutrient; Re(λ ) = real part of ’ λ ’; AVG = average; STD = standard 
deviation (st. dev.); Cj = species ’j’ concentration; RD = dynamic regulatory (recovering) index (equivalent with the recovering rate after 
a dynamic perturbation); QSS = quasi-steady-state; P denotes
the key-protein expressed in the analysed generic GERM; = the sensitivity 
of NutP(j) vs- concentration C(i) of species ’i’. Adapted after [23].
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Table 4-4:  The nominal (homeostatic QSS) E. coli cell conditions, and the recovering rates of a [G(P)1] gene expression regulatory 
module after a –10% impulse perturbation in the [P]s of 1000 nM at an arbitrary t=0. Cell initial volume of the considered E. coli cell, is 
of Adapted from [24] by the courtesy of CABEQ Jl.

 
Table 4-5: Comparison of the species recovering rates for a GERM modelled with a [G(P)1] comparatively to a [G(P)0] model. The 
nominal conditions are those of Table 4-4 for the high ballast cell case, but with [G]s = 1 nM. NG = negligible. Notations: NutP and 
NutG are substrates used in the synthesis of metabolites MetP and MetG , respectively. These metabolites are used for P and G 
synthesis, respectively. G= a generic gene (DNA); P = the protein encoded by G; M = RNA; GP = the inactive complex of G with P; = 
species ’j’ concentration; cyt = cytoplasma; ’o’ = initial; ’s’ index refers to the QSS; NG = neligible. Adapted from
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[175,176].

Outline 5-1: The values of the operating control variables used to simulate the performances of the TPFB-2 bioreactor, to perform its 
parametric sensitivity analysis. Adapted after [63]. Remarks: uptake conversion under nominal (reference) conditions is xHg,ref =0.925. 

The dilution rates are: = /L L LD F V=  (for the bulk liquid), and /G G GD F V=  (for the sparger air).

Table 5-1: Un-structured (apparent, reduced) kinetic model of Michaelis-Menten type for mercury ions reduction by E. coli (after [244-
246]). Notations: substrate S =  ; PT = lumped permease for the membranar transport of ; into cytosol ; PA = 

lumped reductase of cytosolic mercury ions to metallic mercury  ; RSH = low molecular-mass thiol redox cytosolic buffers; 
NADPH = nicotinamide adenine dinucleotide phosphate; subscripts: ‘env’ = environmental; ‘cyt’ = cytosol. Other notations are given in 

the symbols list of chap. 5.1. Atfer [40]. 
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Table 5-2: Nominal operating conditions and characteristics of the semicontinuous
(SCR) three-phase fluidized bed reactor (TPFB) used for mercuric ions uptake by the immobilized E. coli cells on pumice porous support 
Footnote 
a). Notations are given in the chap. 5.1.
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Table 5-3: Three-phase fluidized bed (TPFB) reactor model [1,2,5,33,40,253,254]. Index „s” = concentration at the particle surface (con-
sidered at the particle surface (considered identical to those in the bulk-phase).
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Table 5-3: (continued)
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Table 5-4:The structured variable cell-volume whole-cell (WCVV) model proposed
for the reduction of cytosolic mercury ions to metallic mercury in cloned E. coli cells. Adapted from [1,2,40]. Notations are 
given in the chap.5.1. TF = transcription factor.

Table 5-4: (continued).
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Table 5-4: (continued).
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Table 5-4: (continued).
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Table 5-5: E. coli cell characteristics and the considered cell key-species
concentrations. After [1,2,40].
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Table 5-5: (continued).
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Table 5-6: The characteristics of the TPFB bioreactor analyzed in the chap.5.5.5. for the mercury uptake by an Ps. putida cell culture 
immobilized on porous alginate beds [63]. The nominal operating conditions correspond to those of the TPFB bioreactor used for mercuric 
ions reduction on immobilized cells by Deckwer et al.[248].
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Table 5-7: The reduced mathematical model of the TPFB bioreactor of Deckwer et al. [248], analyzed in the chap.5.5.5.
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Table 5-8: Tested apparent kinetic models for mercury ion reduction by using immobilized Ps. putida cells on alginate, after 

[33,248]. Notation: cHg2e =  cHg2L = environmental Hg2+ concentration; 2 cHg2s = Hg2+ concentration at thr solid surface. These  reaction 
rates are part of the TPFB bioreactor model of (Table 5-7), analyzed in the chap.5.5.5.
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Table 6-1: The nominal initial operating conditions of the FBR used by Chen [268] to collect the kinetic data of the TRP synthesis by using 
a suspended culture of genetically modified E. coli cells (T5 strain).
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Table 6-2: Mass balance of the cell glycolytic key-species, and of the FBR control variables (GLC, FL) for the optimally operated (time 
step-wise feeding policy) FBR. Adapted from [3,25,39,58,62].
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Table 6-2: (continued).

Table 6-3:Reaction rate expressions V1-V6 of the hybrid model of (Table 6-2), describing the dynamics of the cellular glycolytic species 
according to the kinetic model of Maria [3,25], and of Chassagnole et al.[43]. In the present study, this glycolysis kinetic model was mod-
ified by replacing the PTS system (V1 flux) for the GLC uptake with those of the mutant T5 E. Coli strain tested by Maria and Renea [12]. 
The model rate constants were estimated by Maria [3] to fit the experimental data of Chen [268] presented in (Table 6-1 and Figures 6-4, 
6-6, 6-7). Species abbreviations are given in the abbreviation list.
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Table 6-3: (continued)

Table 6-3: (continued)
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Table 6-4: Species mass balance in the TRP- operon expression kinetic model of Bhartiya et al.[289] were modified by Maria et al.[62] 
to better fit the experimental data, as followings: i) PEP (from glycolysis) is the substrate of TRP-synthesis, and the node coupling this 
synthesis with the glycolysis module; ii) a novel model for the TRP-synthesis inhibition was proposed and identified from experiments. 
The model rate constants are estimated by Maria [3] to fit the experimental data ofChen [268] (Figures 6-4, 6-6, 6-7, 6-8) collected from 
a FBR with using themodified E. Coli T5 strain, and the ’nominal’ operating conditions of (Table 6-1).Species notations (TRP, OR, OT, 
MRNA, E are given in the abbreviation list.QSS = quasi-steady-state.”

Table 6-5: Efficiency of the modified E.coli T5 strain for GLC-uptake, and for the TRP production in the tested FBR of (Table 6-1). 
Adapted from Maria and Renea [12]. 
(*) By following the same optimal feeding policy.
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Table 7-1: The considered metabolites in the Edwards and Palsson [4] model of the CCM in the wild Escherichia coli.
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Table 7-1: (continued)

Table 7-1: (continued)
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Table 7-2 (1 of 5): The considered reactions in the Edwards and Palsson [4] model of the CCM in the wild Escherichia coli. Notation: [e] 
= environment; [c] = cytosol (units correspond to mmol/gDW/hr; biomass formation is expressed as g-biomass/gDW/hr, or in 1/hr).

Table 7-2 (2 of 5): (continued)
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Table 7-2 (3 of 5): (continued)

 

Table 7-2 (4 of 5):  (continued)
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Table 7-2 (5 of 5): (continued)
Footnotes: (*) Fluxes correspond to equilibrated stationary growth with a glucose uptake rate of –10 mmol/gDW/hr, and anoxygen uptake 
rate of –1000 mmol/gDW/hr. (**) Flux values are obtained by means of LP procedure from solving the singlelevel optimization problem of 
biomass production maximization in Escherichia coli cells under the basic CONSTR of eq. (5) (not the global optimum).
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Table 7-3: Various local solutions of the MINLP problem for simultaneous
succinate and biomass production maximization in mutant E. coli cells by removing two or four genes from the CCM of the cell wild strain 

of Edwards and Palsson [4] model. The inequality constraint violation index eq.(7) is zero for all below solutions (that is, the 

all inequality constraints are fulfilled). The index is given by eq.(7).
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Table 7-3: (continued)
Footnotes: (a).- Solutions of the MINLP problem with the additional constraints of Burgard et al. [310].
(b).- succinate production rate / glucose consumption rate.
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Table 7-4: (1 of 7) The stoichiometric matrix ’S’ of size [72 species ×  95 reactions], in the MatlabTM code. S = [SS1 SS2 SS3 SS4 SS5 
SS6 SS7], according to [42]. Here is displayed the SS1 sub-matrix.

Table 7-4: (continued 2 of 7). Here is displayed SS2 sub-matrix.
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Table 7-4: (continued 3 of 7). Here is displayed SS3 sub-matrix.
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Table 7-4: (continued 4 of 7). Here is displayed SS4 sub-matrix.
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Table 7-4: (continued 5 of 7). Here is displayed SS5 sub-matrix.
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Table 7-4:  (continued 6 of 7). Here is displayed SS6 sub-matrix.
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Table 7-4: (continued 7 of 7). Here is displayed SS7 sub-matrix.
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Case study no. 2: the use of a hybrid modular CCM cell-
scale structured kinetic model coupled with a FBR classical 
dynamic model (including macro-scale state variables) to 
maximize the TRP production

1.1.	 Symbols used in the chap. 6

ci , [i]                            - Species ’i’ concentration

c x           - Biomass concentration

    - Glucose feeding solution concentration

,0
ext
glcc =   ( )0ext

GLCc t = - Initial glucose concentration in the bioreactor

 

,
feed
glc jc  - Glucose feeding solution concentration over the

              time-arc ’J’
ext
GLCc    - Glucose concentration in the bulk-phase

FL   liquid feed flow rate in the bioreacrtor

2 4, , , , , , ,j j M mK k K K n V V
 

max , , , ,j x x xr a b N  
max ,uptaker

, , 2, ,PTS al PTS aK K  , 3 ,PTS aK  - Reaction rates, and/or equilibrium constants of the

  kinetic model

2 , ,mV g  , ,amp atp
R TK K Tµ ,

, ,T T Ta b N etc

ri    - Species (i) reaction rate

t , tf - Time, batch time

1 6V V−  - metabolic fluxes in the glycolysis (Tables 6-2, 6-3,

                                                               and Figure 6-3)

LV   -liquid volume in the bioreactor

,tca trpy y   -stoichiometric coefficients

, , ,α β γ δ    -Reaction rate constants

µ   -Cell content dilution rate , that is ln(2) / tc , where tc

  denotes the cell cycle

Ω   -  FBR optimization objective function
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xρ  - biomass density

Subscripts

0,o     - Initial

cell    - Referring to the (inside) cell

ext     - External to cell (i.e. in the bulk phase)

f - final

inlet - In the feed

x - Biomass

Abbreviations

13dpg, pgp - 1,3-diphosphoglycerate

3pg - 3-phosphoglycerate

2pg - 2-phosphoglycerate

AA - amino-acids

Accoa, acetyl-CoA - acetyl-coenzyme A

AC - acetate

ADP, adp - adenosin-diphosphate

AK-ase - adenylate kinase

ALE - adaptive laboratory evolution

AMP, amp - adenosin-monophosphate

ATP, atp - adenosin-triphosphate

ATP-ase - ATP monophosphatase

BR - Batch reactor

CCM - central carbon metabolism

CIT - citrate

CSTR - continuously stirred tank reactor

DO - dissolved oxygen

DW - dry mass

E -

enzyme anthranilate synthase in the TRP synthesis

model.

ETOH - ethanol

ext - External to the cell (i.e. in the bulk phase)

FBR - Fed-batch bioreactor

FDP, fdp - fructose-1,6-biphosphate
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F6P, f6p - fructose-6-phosphate

GalP/Glk - galactose permease/glucokinase

G3P, g3p, GAP,

gap, 3PG, 3pg

- glyceraldehyde-3-phosphate

2PG, 2pg - 2-phosphoglycerate

G6P, g6p - glucose-6-phosphate

GLC, glc - glucose

Glc(ex), [GLC]ext - Glucose in the environment (bulk phase)

GMO - genetic modified micro-organisms

GRC - genetic regulatory circuits

HK-ase - hexokinase

HSMDM - hybrid structured modular dynamic (kinetic) models

JWS - Silicon Cell project of Olivier and Snoep [49]

LAC, lac - lactate

Max (x) - Maxim of (x)

MGM -The reduced kinetic model of glycolysis developd by Maria [25]

MMA - the adaptive random optimization algorithm of Maria [71,72]

MRNA, mRNA - tryptophan messenger ribonucleic acid during its encoding gene dynamic transcription, and translation;

NAD(P)H - nicotinamide adenine dinucleotide (phosphate) reduced

NLP - Nonlinear programming

ODE - ordinary differential equations set

OR - the complex between O and R (aporepressor of the TRP gene)

OT - the total TRP operon

P, Pi - Phosphoric acid

PEP, pep - phosphoenolpyruvate

13DPG=PGP - 1,3-diphosphoglycerate

PFK-ase - phosphofructokinase

PK-ase - pyruvate kinase

PTS - phosphotransferase, or the phosphoenolpyruvate glucose phosphotransferase system

PYR, pyr - Pyruvate

QSS - quasi-steady-state

R5P - ribose 5-phosphate

mRNA - messenger ribonucleic acid
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SUCC, suc - succinate

TCA, tca - tricarboxylic acid cycle

TF - gene expression transcription factors

TRP, Trp, trp - tryptophan

X - biomass

Wt. - Weight

[.] - Concentration

Bioprocess generalities
”An exceptional example of multiple applications of extended structured HSMDM dynamic models is offered by Maria [3,12]. 

As exemplified in the chap. 4 of this work, hybrid kinetic models, linking structured cell metabolic processes to the dynamics 
of macroscopic variables of the bioreactor, are more and more used in the engineering evaluations to derive more precise 
predictions of the process dynamics under variable operating conditions. Depending on the cell model complexity, such a math 
tool can be used to evaluate the metabolic fluxes in relationships to the bioreactor operating conditions, thus suggesting ways to 
genetically modify the micro-organism for certain purposes. Even if development of such an extended dynamic model requires 
more experimental and computational efforts, its use is advantageous. 

The approached probative example of this chapter refers to a HSMDM model able to simulate the dynamics of nano-scale 
variables from several pathways of the central carbon metabolism (CCM) of E. coli cells, linked to the macroscopic state variables 
of a fed-batch bioreactor (FBR) used for the tryptophan (TRP) production. The used E. coli strain was modified to replace 
the PTS-system for glucose (GLC) uptake with a more efficient one. The study presents multiple elements of novelty: (i) the 
experimentally validated modular model itself, and (ii) its efficiency to in-silico derive an optimal operation policy of the FBR, 
with a higher accuracy compared to the classical empirical (heuristically) optimization rules using apparent unstructured kinetic 
models of the bioprocess [11,268,269].

Over the last decades, there is a continuous trend to develop more and more effective bioreactors [253,269] to industrialize 
important biosyntheses for producing fine-chemicals used in the food, pharmaceutical, or detergent industry, by using free-
suspended or immobilized cell cultures in suitable bioreactors, as reviewed by Maria [11]. The batch (BR), semi-batch (fed-
batch, FBR), a serial sequence of BR-s [8], or the continuously operated fixed-bed, or three-phase fluidized-bed bioreactors (with 
immobilized biocatalyst), etc., are successfully used to conduct biosyntheses aiming to replace complex chemical processes,

energetically intensive and generating toxic wastes [3,5,11,58,270]. 

Among applications, it is to mention fermentative processes for production of organic acids, alcohols, vinegar, amino-acids 
(TRP, cysteine, lysine, etc.), proteins, yeast, hydrogen, food products, and food additives, recombinant proteins (monoclonal 
antibodies), etc., by using bioreactors with microbial (cell) cultures, or enzymatic reactors [269,270], by integrating genetic and 
engineering methods

[240,271]. 

Bioreactors with microbial / animal cell cultures (suspended or immobilized) have been developed in simple or complex 
constructive / operating alternatives as reviewed by [11,272,273], to mention only few of such review works. In spite of their 
larger volumes, the continuously mixing aerated tank reactors (CSTR), operated in BR, FBR, or continuous modes, are preferred 
for bioprocesses requiring a high oxygen transfer, and a rigorous temperature/pH control. This is why, an effective FBR was used 
in the approached case study of TRP production, as being more flexible like operating regime alternatives.

From the engineering point of view, in addition to the production capacity optimization, there are several important problems 
to be addressed, that is: (1) The key-point in screening among bioreactor alternatives and operating modes. The answer to this 
problem is related to the maintenance of the bioprocess optimal

conditions that ensure a high biomass activity (free or immobilized on a suitable porous support), by supporting its growth 
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to compensate its natural biodegradation, and the risk to disintegrate the flocks or the support through mechanical shearing 
induced by the mixing, thus leading to the biomass leakage and washout. (2) Development of optimal operating policies of the 
adopted/given bioreactor, based on an available process dynamic (kinetic) model (extended or reduced) derived from on-/
off-line measurements. The model-based optimal operation of the bioreactor can be applied in two ways: (2a) ’off-line’, in 
which an optimal operating policy is determined by using an adequate kinetic model (usually a deterministic one, based on the 
process mechanism), previously identified from separate experiments; in this alternative, extended/complex dynamic models 
of the bioprocess/bioreactor can be used, not being restricted by the ’real-time’ application, and (2b) ’on-line’, with using an 
extremely simplified dynamic model (an apprent-empirical one, often of a simple polynomial form) of the biorocess/bioreactor, 
and a classic state-parameter estimator, based on the online recorded data. Of course, the (2b) alternative, even if simple and 
with a ’realtime’ application is very approximate, being often inadequate, and requires frequent (during bioreactor operation) 
empirical model updating [13,14,18,274- 276]. 

The current (default) approach to solve the model-based design, optimization and control problems of the industrial 
biological reactors is the use of unstructured models of Monod type (for cell culture reactors) or of Michaelis- Menten type (if only 
enzymatic reactions are retained) that ignores detailed representations of cell processes [23,31,32,34,241,269]. See an example 
in chap. 5.5.5. The applied engineering rules are similar to those used for chemical processes and inspired from the nonlinear 
system control theory [13,15,31-38,277,278]. However, by accounting for only key process variables (biomass, substrate and 
product concentrations), these models do not properly reflect the metabolic changes, being unsuitable to accurately predict the 
cell response toenvironmental perturbations by means of (self-) regulated cell metabolism. 

The alternative is to use structured kinetic models, by accounting for cell metabolic reactions and component dynamics. Such 
deterministic models lead to a considerable improvement in the predictive power, with the expense of incorporating a larger 
number of species mass balances including parameters (rate constants) difficult to be estimated from often incomplete data and, 
consequently, difficult to be used for industrial scale purposes [1,2,21-24,40,41,63].

An alternative compromise, also tested in this chapter, and in the previous chap. 5, is to use hybrid dynamic models that 
combine unstructured with structured process characteristics, linked to the macroscopic state variables of the bioreactor dynamic 
model, to generate more precise predictions [21-23,40,63,279,280]. The idea of hybrid kinetic models is to inter-connect groups 
of process variables belonging to at least two hierarchical levels of model details. The resulted composite (hybrid) model is able 
to simulate the bioreactor dynamics simultaneously at various levels of detail. Thus, the dynamics of the bioreactor macroscopic 
state variables (i.e. species present in the liquid bulk) is simulated concomitantly to the nanoscopic variables describing the cell 
metabolic processes of interest, because the macro-/nano-scale variables are closely linked, as long as some cell metabolites are 
imported/excreted from/in the bioreactor bulk. Even if such a complex / extended dynamic model, including some complex cell 
metabolic pathways requires more experimental and computational efforts to be built-up and identified from structured kinetic 
data, the resulted hybrid (bi-level,macroscopic and nanoscopic) dynamic model presents major and remarkable advantages, as 
listed (a-j) and discussed in the chap.4.1.

In fact, such a hybrid structured cell dynamic model must include only the essential parts of the central carbon metabolism 
(CCM) (Figure 4-1, Figure 4-23, Figure 4-37, Figure 4-38, Figure 4-42, Figure 4-43, and Figure 4-46) by incorporating the 
pathway responsible for the target metabolite synthesis, and the lumped modules of the cell core, that is: the glycolysis, the GLC 
uptake system (i.e. the phosphotransferase (PTS), or an equivalent system), the ATP-recovery system, the pentose-phosphate 
pathway (PPP), the tricarboxylic acid cycle (TCA), and other metabolic pathway modules (if necessary in simulations). See for 
instance [39,42,58,68].

A special interest was given to the accurate modelling of the glycolysis dynamics and its self-regulation [25,39,59,61] as long 
as most of the glycolysis intermediates are starting nodes for the internal production of lot of cell metabolites (e.g. amino-acids, 
SUCC, CIT; TRP) [3,11,42,58,62]. 

This need to have good quality structured cell models to simulate the dynamics (and regulation) of the bacteria CCM became 
a subject of very high interest over the last decades, allowing in-silico design of GMO-s with desirable characteristics of various 
applications [21-24].

As a result, an impressive large number of valuable structured deterministic models (based on a mechanistic description of 
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the metabolic enzymatic reactions tacking place among individual or lumped species) have been proposed in the literature to 
simulate the cell CCM dynamics, with including tenths-to-hundreds of key species. Here, it is worth mentioning the E. coli model 
of Edwards and Palsson [4] used by [25,42,43,44,45,46,47] for various purposes, or the S. cerevisiae glycolysis model of Teusink 
et al.[48], or the JWS platform of Olivier and Snoep [49], and the MPS platform of Seressiotis and Bailey [50] to simulate

cell metabolism (dynamics and/or fluxes), to mention only few of them. Simulation platforms, such as E-cell [51,52,], or 
V-cell [53], accounting for thousands of species and reactions, display extended capabilities to predict the dynamics of the cell 
metabolism under various conditions, based on EcoCyc, KEGG, Prodoric, Brenda and other bio–omics databanks (review of Maria 
[22,23]). A worthwhile CCM-based dynamic or stationary models were reported by Maria et al. [3,23,25,42] and schematically 
represented in (Figure 4-1, Figure 4-23, Figure 4-37, Figure 4-38, Figure 4-42, Figure 4-43, and Figure 4-46). Deterministic 
kinetic models using continuous variables has been developed by Maria [25] for the glycolysis, and by [43,54-57] for the CCM. 
Such models can adequately reproduce the cell response to continuous perturbations, the cell model structure and size being 
adapted based on the available –omics information.

In spite of such tremendous modelling difficulties, the development of structured reduced deterministic (rather than 
stochastic) models [21-23] able to adequately reproduce the dynamics of some CCM complex metabolic syntheses [20,25,26], 
but also the dynamics of the genetic regulatory circuits (GRC-s) [21] tightly controlling the metabolic processes reported 
significant progresses over the last decades [27,28]. Even if they are rather based on sparse information from various sources, 
unconventional statistical identification, and lumping algorithms [21-23,29,67,64], such structured reduced deterministic 
kinetic models have been

proved to be extremely useful for in-silico analyse and characterize the cell CCM, (especially the stationary metabolic fluxes), 
and for designing novel GRC-s conferring new properties/functions to the mutant cells [21-23,30].

Even if such extended structured models are currently used only for research purposes, being difficult to be identified, it is 
a question of time until they will be adapted for industrial / engineering purposes in the form of adaptable structured hybrid 
models HSMDM. The case study presented and discussed here proves this engineering applicative aspect of HSMDM-s.

This chapter is aiming to prove the feasibility and advantage of using this novel concept to couple an extended cell structured 
deterministic (modular) model with the macroscopic dynamic model of the bioreactor. The resulted hybrid dynamic model 
HSMDM was successfully used for engineering evaluations. Exemplification is made for optimization of the FBR used for the 
TRP production.

L-Tryptophan (TRP) is a high-value aromatic amino acid with important applications in food and pharma industry. TRP is an 
aromatic non-polar α-aminoacid essential in humans, that is used in the cell biosynthesis of proteins, being also a precursor to 
the neuro-transmitter serotonin, of the melatonin hormone, and of vitamin PP [281].

The case study presented in this chapter uses a hybrid dynamic HSMDM model built-up by Maria [3] by linking a CCM-
based structured kinetic model with a FBR ideal dynamic model. The resulted hybrid (bi-level) FBR model was used to in-silico 
determine the optimal (time step-wise) feeding policy of the FBR

used by Chen et al. [282] to study the TRP-synthesis by using a genetically modified E. coli T5 strain culture. The thus 
obtained optimal operating policy of the FBR has proven to be very effective, by ensuring maximization of the TRP production 
with involving only two key control variables, that is:

a)	  the variable feed flow-rate FL,j, (j = 1,…, Ndiv), and

b)	 the variable feeding GLC concentration ( ), 1,..., ,feed
glc jc j Ndiv=

Where Ndiv = 5 are the ’time arcs’, that is the equal time-intervals in which the batch-time was divided. During each ’time-
arc’ (of equal lengths), the control variables are kept constant at optimal values determined from solving the below described 
optimization problem (i.e. maximization of the TRP production in this case).

The obtained optimal operating policy of the approached FBR, by using the extended HSMDM model, reported better 
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performances compared to the not-optimally operated FBR of Maria et al.[3,58], or of Chen [268]. 

The structured modular kinetic model of Maria [3,25] used in this numerical analysis includes four inter-connected modules 
characterizing the dynamics of the concerned cell pathways involved in the TRP-synthesis, that is:

a)	 Module [A] – glycolysis;

b)	 Module [B] – ATP recovery system;

c)	 Module [C] – TRP synthesis (that is the TRP-operon expression);

d)	 Module [X] – the suspended biomass growth.

This cellular structured bioprocess model was experimentally identified, and checked over extensive experiments conducted 
by several authors, that is [25,26,39,43] for the glycolysis, and by Chen et al. [268,282], and by Maria [3] for the TRP synthesis. 
Experimental data of Chen [268] for the TRP-synthesis are also used to validate the predictions of the hybrid HSMDM model 
[12].

The present study presents multiple elements of novelty. i) Although production of TRP by engineered E. coli has been 
extensively studied, the need of multiple precursors for its synthesis and the complex regulations of the biosynthetic pathways 
make the achievement of a high yield still very challenging [3]. This engineering problem was solved here by using a model-
based (in-silico) approach, completed with a biological improvement of the used E. coli cell culture; ii) The derived optimal 
operating policy of the FBR is given on time-intervals (the so-called ‘time-arcs’) of equal length, and of a reduced number to be 
easily implemented. The control variables present optimal but constant levels over each time-arc (different between time-arcs) 
during the FBR operation. iii) The used biomass culture refers to a modified E.coli T5 strain. The characteristics of this strain 
were reflected in the rate constants estimated by Maria [3]. This T5 strain was produced by Chen et al.[282,283] to increase 
the TRP production in their bench-scale FBR. They performed genetic modifications of the TRP producer ’wild’ strain S028. 
Basically, they remove the PTS import-system of GLC, in the ‘wild’ strain by replacing it by a more effective one based on the 
galactose permease/ glucokinase (GalP/Glk) uptake system, by modulating the gene expression of GalP/Glk. The resulted T5 
strain showed an increase of the specific TRP production rate in a non-optimal FBR by 52.93% (25.3 mg/gDW biomass /h) 
compared to the initial strain [282], and by ca. 70% if the used FBR is optimally operated (this case study). iv) The results 
reveal the close link between the cell key-metabolites dynamics and the FBR operating conditions. v) The used hybrid bi-level 
kinetic HSMDM model is enough complex to adequately represent the dynamics of the FBR state-variables, that is: the biomass 
[X] growth in the bulk-phase, the GLC depletion in the bioreactor liquid-phase, the excreted TRP dynamics in the bulk-phase, 
and the dynamics of the excreted PYR but also the dynamics of the cell key-species involved in the concerned reaction pathway 
modules, that is: [A] glycolysis, [B] ATP-recovery system, [C] TRP-operon expression.”

The used E. coli GMO strain
Although “production of TRP by engineered E. coli has been extensively studied, the need of multiple precursors for its 

synthesis, and the complex regulations of the biosynthetic pathways make the achievement of a high product yield still very 
challenging. The metabolic flux analysis of [268,283,284,] suggests that replacement of the PTS glucose uptake system in the 
wild E. coli with the galactose permease/ glucokinase (GalP/Glk) uptake system can double the TRP yield from glucose. Finally, 
these authors obtained a promising E. coli T5 strain which, tested in a bench-scale pilot FBR proved an increased GLC import 
capacity of the GMO E. coli together with an increased TRP yield by ca. 20% compared to an initial mutant S028 strain (that 
is 0.164 vs. 0.137 g TRP/g GLC), while the specific production rate was increased by 53% [282]. The cell flux analysis of Chen 
[268,283] indicated the doubling of fluxes responsive for the

TRP synthesis. Finally, a highly productive strain T5AA resulted, with a TRP production rate of 28.83 mg/gDW/h” 
[268,282,284,285]. More details on E. coli mutants presenting alternative routes for GLC uptake are given by [268,282,284,285-
288].
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Experimental FBR bioreactor and the recorded kinetic data
”To estimate the rate constants of the hybrid structured kinetic model for the studied TRP synthesis with using the modified 

E.coli T5 strain of [3,268,282], Maria [3] used the experimental kinetic data of Chen [268] obtained in a benchscale three-
phase (G-L-S) FBR operated under the so-called ’nominal’ (non-optimal) conditions displayed in (Table 6-1). The completely 
automated FBR of 1.5 L capacity includes a large number of facilities described in detail by Chen [268]. The nominal non-optimal 
operation of this bioreactor means addition of a controlled constant feed flow-rate of substrate solution (GLC) of a constant 
concentration, together with nutrients, additives (for the pH control), anti-bodies, etc. in recommended amounts (Table 6-1) 
along the entire batch. A reduced FBR scheme can be found in the (Figure 6-1).

To obtain kinetic data, samples have been taken from the FBR bulk during the batch (63 h), with a certain frequency (2 to 5 h), 
thus determining the concentration dynamics of the key-species of interest, that is: X (biomass), GLC, TRP, PYR. These recorded 
data are presented in (Figures 6-4, Figure 6-6, Figure 6-7, and Figure 6-8, see the blue points). Concerning the analytical 
techniques used to derive such measurements, the reader is referred to the work of Chen [268] (see also the Acknowledgement 
of Maria and Renea [12]).” 

The structured dynamic HSMDM model for the TRP production in a FBR
The HSMDM model developed by Maria [3], and valorized for engineering purposes by Maria and Renea [12] is a hybrid (bi-

level) model including two inter-connected parts, that is: (1).- one ’classical’ part is simulating ”the dynamics of the bioreactor 
macroscopic state variables (i.e. species present in the liquid bulk) and, (2).- one structured part is simulating the dynamics of the 
nanoscopic variables describing the cell metabolic processes of interest (for the ’wild’, or the GMO E. coli). All these simultaneous 
dynamic simulations at various levels of detail are based on the differential mass balance of the macroscopic and nanoscopic 
state variables.

Dynamic simulation of the two HSMDM model parts (1-2) is mandatory performed concomitantly, because the macro-/
nano-scale variables are closely linked and inter-related, as long as some cell metabolites are imported/excreted from/in the 
bioreactor bulk. Even if such a complex / extended dynamic model, including some complex cell metabolic pathways requires 
more experimental and computational efforts to be built-up and identified from structured kinetic data, the resulted hybrid 
(bi-level, macroscopic and nanoscopic) dynamic model presents major and remarkable advantages, as listed (issues a-j) and 
discussed in the chap.4.1. The both parts (1-2) of this HSMDM dynamic model are below described

in detail, module after module. 

Being a metabolite of high practical importance, intense efforts have been invested to decipher its synthesis regulation 
mechanism in various microorganisms, for deriving an adequate dynamic model of its QSS or oscillatory synthesis to be used 
for engineering purposes. Some results includes the deterministic kinetic models of Maria et al.[62], and of Bhartiya et al.[289], 
while other studies [54] are rather focus on determining correlations between flux distribution, flux control, and the optimized 
enzyme amount distribution, but employing a too reduced kinetic model, not able to simulate most of the CCM reaction pathways, 
and the cell metabolic process dynamics.

The TRP synthesis regulation being a very complex process, a significant number of simplified kinetic models with lumped 
terms (species and/or reactions) have been proposed in the literature (see the review of Maria et al. [58,62]). Kinetic modelling 
of this complex process is even more difficult because, as proved by the following researchers [39,59,62,290,291,292], under 
certain FBR operating conditions, the TRP-synthesis can become an oscillatory process. Oscillations in the TRP synthesis are 
produced due to the concomitant activation and high order repression of the TRP-operon expression, together with a nonlinear 
demand for end product, making its expression to be cyclic. The cell growth and dilution rates [related to the cell cycle, and the 
liquid residence-time in a (semi-)continuous bioreactor] strongly influence the TRP system stability, as in-silico proved by Maria 
[39,58].

The adopted hybrid kinetic model is those of Maria [3] built-up using the kinetic data of Chen [268] collected in a FBR 
operated under the nominal (not-optimal) conditions of (Table 6-1), with using the T5 strain of E. coli. This complex structured 
kinetic model presented in (Table 6-2, Table 6-3, and Table 6-4) is a deterministic one. The CCM-based model core is the 
glycolysis dynamic model of Maria [25], validated by using literature data. 
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To keep the bi-level HSMDM hybrid model of Maria [3,39] adapted here of a reasonable extension, but also to facilitate 
estimation of its rate constants, this dynamic model accounts for only the key-species included in four linked cell reaction modules 
responsible for the TRP-synthesis, as followings: three structured modules {[A], [B], [C]} concern some essential CCM cell 
processes ( Figure 6-3 for {[A], [B], [C]}, and Figure 6-2 for {[A]} ); the fourth kinetic module concerns the biomass [X] growth 
dynamics in the FBR bulk. These interconnected four modules are also integrated in the FBR dynamic model, as followings:

Module [A] - glycolysis with a modified GLC-uptake system (due to the used

modified E. coli T5 strain) (Figure 6-2);

Module [B] - ATP-recovery system. The pink rectangle in (Figure 6-3);

Module [C] - TRP-operon expression. The gray rectangle in (Figure 6-3)

Module [X] - The biomass growth kinetic model (in the FBR bulk-phase).

Macroscopic FBR dynamic model – describes the dynamics of the bioreactor

state variables (GLC, X, TRP, PYR, V).”

A brief description of these parts of the HSMDM hybrid model is presented below. For more details, the reader should consult 
the works of Maria [3,12].

The biomass [X] growth
”The cell culture in the bioreactor is considered to be homogeneous, and introduced as a lump [X] in the FBR model of (Table 

6-2). A modified Contois model, adjusted by considering a power-law inhibition with the 1-st order growing biomass at the 
denominator [293], was proved to be the most adequate vs. the experimental data of (Figure 6-7c). To overcome the absence, at 
this modelling stage, of the predicted values of [X] and [GLC] (coming from the FBR model coupled with the glycolysis dynamic 
model), simulations of the biomass dynamics over the batch have been performed by using the experimentally recorded [X, and 
GLC] species trajectories (of Chen [268]), interpolated with the cubic splines functions (INTERP1 facility of MatlabTMpackage). 
The estimated kinetic model of the biomass is given in (Table 6-2).

The [X] module is connected to the other cell processes, by influencing the GLC dynamics in the bulk phase through the 
X-growth rate (Table 6-2) that, in turn, influences the GLC import flux V1 into the cell (Table 6-3, Figure 6-2, and Figure 6-3).”

Module [A] - Glycolysis
In short, ”glycolysis module is a determined sequence of ten enzyme catalyzed reactions (see the reduced pathway of (Figure 

6-2), and of (Figure 6-3) with only 6 lumped reactions) that converts glucose (GLC) into pyruvate (PYR). The free energy 
released by the subsequent TCA originating from PYR is used to form the high-energy molecules ATP, and NADH that support 
the glycolysis and most of enzymatic syntheses into the cell [294]. Adequate modelling of the glycolysis dynamics is important 
because the glycolytic intermediates provide entry/exit points to/from glycolysis. Thus, most of the monosaccharides, such as

fructose or galactose, can be converted to one of these intermediates, further used in subsequent pathways. For example, 
PEP is the starting point for the synthesis of essential aminoacids (AA) such as tryptophan, cysteine, arginine, serine, etc. 
[43,62,295,296].

Due to the tremendous importance of the glycolysis in simulating the cell CCM, intense efforts have been made both in its 
experimental study, and in modeling the dynamics of this process specifically in bacteria ( see the short reviews [25,39,297] ). 
The large number of glycolysis reduced or extended kinetic models proposed in the literature (see the review [25]) present a 
complexity ranging from 18-30 species, included in 48-52 reactions, with a total of 24-300 or more rate constants. Most of these 
models are however too complex to be easily identified from (often) few available kinetic data, and too complex to be further 
used for engineering calculations. Beside, with few exceptions, most of them can not satisfactorily reproduce the glycolytic 
oscillations occurrence on a mechanistic basis.” [39,59].

The adopted glycolysis kinetic model of Maria [25,39] even if of a reduced form, “by accounting only for 9 key-species in 
lumped reactions with including 17 easily identifiable rate constants belonging to V1-V6 metabolic fluxes (Figure 6- 2, Figure 
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6-3, Table 6-2, and Table 6-3) has been proved to adequately reproduce the cell glycolysis under steady state, oscillatory, or 
transient conditions depending on: (i) the defined glucose concentration level/dynamics in the bioreactor bulk (liquid) phase, 
(ii) the total A(MDT)P cell energy resources, and (iii) the cell phenotype characteristics related to the activity of enzymes 
involved in the ATP utilization and recovery system {here denoted as Module [B]}. A detailed discussion about the operating 
conditions leading to glycolytic oscillations are extensively presented by Maria et al.[39,59,62]. This is why, the FBR and the 
glycolysis dynamic models have to be considered together (Table 6-2, and Table 6-3) when simulating the dynamics of the 
[GLC] in the FBR bulk-phase, and of the cell metabolites of interest {F6P, FDP, PEP, PYR, ATP, TRP-operon expression} into the 
cell. The adopted rate expressions for the glycolysis main fluxes V1-V6 presented in (Table 6-2, and Table 6-3) are those of the 
basic model, excepting those of the GLC import system (V1), modified to match the T5 E. coli strain kinetic data [3]. It is worth 
mentioning that, even if not the case here, under certain conditions (that is external/environmental, and internal/genomic 
factors), glycolysis and TRP-synthesis can become oscillatory processes” [25,58,59,61,62]. According to the experimental data, 
the produced TRP (that is the denoted Module [C] here) is excreted (Figure 6-3) through a process described by Chen [268]. 
The PYR key-metabolite concentration in the cell is regulated through complex mechanism [298,299], the excess being excreted, 
as experimentally proved by Chen [268].

”Starting from the extended reaction pathway of (Figure 4-1), and from the CCM models of Chassagnole et al.[43], of Edwards 
and Palsson [4], and of Maria et al. [42], and by applying chemical engineering lumping techniques, Maria [25] proposed a valuable 
reduced dynamic model of glycolysis displayed in (Figure 6- 2), and denoted by MGM, by accounting only for 9 key-species in 
7 lumped reactions, with including 17 easily identifiable rate constants belonging to V1-V6 metabolic fluxes (Figure 6-2, and 
Figure 6-3, left-side). The MGM rate constants have been identified by Maria [25] with using the experimental kinetic data of 
[26,43] obtained from a FBR including a ’wild’ E.coli culture, operate with ’pulse-like’ addition of the substrate (GLC). When 
using the modified E.coli in the FBR, Maria [3] adjusted the MGM rate constants by using the {GLC, TRP, PYR, X} experimental 
kinetic curves recorded over the FBR batch (TRP, and PYR, being two excreted metabolites by the cells in the growing medium).

The MGM model has been proved to adequately reproduce the cell glycolysis under steady state, oscillatory, or transient 
conditions according to: (i) the defined glucose concentration dynamics in the bioreactor, (ii) the total A(MDT)P cell energy 
resources; (iii) the cell phenotype characteristics (related to the activity of enzymes involved in the ATP utilization and recovery 
system) [39,59,62]. Here A(MDT)P denotes the lump of the following species: ATP = adenosin-triphosphate; ADP = adenosin-
diphosphate; AMP = adenosinmonophosphate. This is why, the FBR and the MGM glycolysis dynamic models have to be 
considered together [3] when simulating the dynamics of the [GLC] in the FBR bulk-phase, and of the cell metabolites of interest 
{F6P(fructose-6- phosphate), FDP(fructose-1,6-biphosphate), PEP(phosphoenolpyruvate), PYR(Pyruvate), ATP} into the cell. 
The adopted rate expressions for the glycolysis main metabolic fluxes V1-V6 in the here discussed HSMDM hybrid model are 
those of the basic MGM model.”

Module [B] - the ATP recovery system
As revealed by the reactions figured in the pink rectangle of (Figure 6-3), “the efficiency and the dynamics of the ATP recovery 

system is essential for the reaction rates of the whole CCM, as long as ATP plays a catalytic-chemical energy provider role. As 
underlined by Maria et al. [39,59,62], among the involved parameters, an essential factor is the k6 reaction rate (determined 
by the ATP-ase characteristics in Figure 6-3) and included in the glycolysis model of (Table 6-2, and Table 6-3). The involved 
enzymes characteristics are directly related to the cell phenotype (that is cell genomic) controlling the [AMDTP] total energy 
resources level. To not complicate the simulations, the [AMDTP] level was kept unchanged in the present analysis at an average 
value given in (Table 6-1), as suggested by Chassagnole et al.[43]. The adopted kinetic model for the glycolysis (that is the 
V1-V6 reaction rates expressions of (Figure 6-3, Table 6-2, and Table 6-3), and the equilibrium relationships for the ATP-
ADP-AMP system (V6, and equilibrium relationships) given in (Table 6-2, and Table 6-3) were imported from the literature 
[3,25,39]. This kinetic model was validated by Maria [3], based on experimental checks to fairly represent the dynamics and the 
thermodynamics of the internal modules [A], and [B] also in the modified E. coli T5 strain. Maria [25,39] proved that this ATP 
recovery model fairly represent the dynamics and the thermodynamics of such an important internal module. Rate constants 
were identified concomitantly with those of module [A], in the same way.”

As an observation, the two modules [A], and [B] are inter-connected by sharing the ATP species, while the module [A] and 
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[X] are inter-connected by sharing {X, and GLC} species. Thus, the dynamics of species belonging to the three inter-connected 
modules {[A], [B], and [X]} can be simulated concomitantly, according to the reduced reaction pathway of (Figure 6-3).

 Module [C] - TRP operon expression system
“The adopted in-silico evaluation of the TRP synthesis of Maria [3] is based on a simplified pathway of the TRP-operon 

expression, as displayed in (Figure 6-3), derived from various studies reviewed by Maria et al.[62]. Modelling the TRP synthesis 
on a deterministic (mechanism-based) approach is difficult because this cellular process is known as being, under certain 
conditions, a QSS, or an oscillatory one [39,62,289,290,291]. However, to avoid extended models, difficult to be estimated and 
used, most of the reduced dynamic models from literature do not distinguish the process components from the regulatory 
components, and lumped reactions/species are considered instead, the regulatory performance being included via adjustable 
model parameters and terms. Kinetic models trying to reproduce the TRP-operon expression self-regulation [290,291] are too 
extended to be of use for engineering evaluations purposes. Due to the process complexity, some modelling approaches [54] are 
rather focus on determining correlations between flux distribution, flux control, and the optimized enzyme activity distribution, 
by employing a too reduced kinetic model, not able to simulate most of the CCM key-modules and, consequently, its predictive 
power is very limited. Due to such reasons, in the present analysis, simulations of the TRP synthesis were performed by using 
the reduced CCM-based kinetic model of Maria [39,62].

The adopted dynamic model of Maria [3] for the TRP synthesis (TRP-operon expression) is given in (Table 6-4). This kinetic 
model is derived from those of Bhartiya et al. [289]. The operon expression regulation terms (C1,C2) were kept unchanged. 
Only the TRP mass balance was changed according to the below (a-d) reasons. The rate constants of the considered OR, mRNA, 
TRP, E key-species mass balances were re-estimated by using the experimental kinetic data of Chen [268] given in (Figure 6-4, 
Figure 6-6, Figure 6-7, and Figure 6-8). The TRP mass balance of the Bhartiya et al.[289] model was modified and re-estimated 
stepby- step as followings:

a)	  An explicitly connection of the TRP-module to the glycolysis module [A] pathway was introduced through the PEP 
precursor sharing node (in Figure 6-3). Consequently, PEP is included as a substrate in the TRP mass balance (CTRP/dt) in 
(Table 6-4), while the PEP consumption term is also considered in the PEP balance of the glycolysis model according to the 
recommended fluxes ratios of Stephanopoulos and Simpson [295], as a first guess (Table 6-2). Analysis of this model suggests 
that intensifying TRP synthesis clearly depends on the glycolysis intensity (that is the magnitude of the average concentrations 
of the glycolytic species), and on its dynamics (QSS, or oscillatory) [25,59]. In fact, as remarked by [284,286], the PEP precursor 
is the limiting factor for the TRP-synthesis. This is why, intense efforts have been made to increase its production by glycolysis 
intensification. This can be realized by optimizing the FBR operating policy (as in the present numerical analysis), and/or by 
using (also in this analysis) a genetically modified E. coli T5 strain culture of [268,282].

b)	 The TRP-synthesis model of Bhartiya et al.[289] (Table 6-4) includes two terms for the TRP-product inhibition, that is 
the C3-term (of allosteric-type), plus a Michaelis-Menten term. Our tests proved that these terms do not adequately fit the TRP 
experimental kinetic data of (Figure 6-8). This is why, the product inhibition term in the TRP balance of (Table 6-4) has been 
replaced by the most adequate Contois-type model, with considering a power-law inhibition of the 1-st order growing TRP at 
the denominator. Eventually, the rate constants of the TRP kinetic module [C], the PEP consumption stoichiometry, and the 
rate-constants of the all modules [A], and [B] were re-estimated (refined) with using the whole (complete) hybrid FBR model 
by using the all available experimental kinetic trajectories of the key-species offered by Chen [268](see the acknowledgement of 
Maria [3]), and given in (Figure 6-4, Figure 6-6, Figure 6-7, and Figure 6-8).

c)	  The initial guess of the rate constants of the TRP module [C] were adopted from the literature. Finally, this rough 
estimate was refined with using the experimentally recorded TRP species dynamic trajectory The required PEP, and GLC 
dynamic trajectories were transferred from the simulated {FBR-dynamic model, and module [A], and module [B]}, all being 
available at this point.

d)	  By contrast to the literature, in the TRP balance of (Table 6-4), an activation inhibition term was considered by bringing 
together the substrate (PEP), and the first key-enzyme (anthranilate synthase, E) who trigger the TRP synthesis [3].

Such an approach was proved to better fit the experimental data ctrp(tu ) , u=1,…,n (no. of data, i.e. 17) of (Figure 6-8), and 
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to confer more flexibility/adjustability to the kinetic model. The estimated ’g’ constant, of a small negative value, reflects the 
slightly inhibition of the TRP-synthesis with the substrate PEP,as suggested in the literature.”[3]

The FBR dynamic model
”All the above described four kinetic model modules are integrated in the FBR dynamic model. To not complicate the 

numerical simulations, the FBR model adopted by Maria [3] is a classical one, that is the FBR ideal model of Moser [253], which 
fairly describe the key-species dynamics during the batch at a macroscopic level (in the liquid bulk phase). The bioreactor initial 
conditions and the time step -wise dynamics of the two control variables [that is (1) added GLC substrate solution, and (2) the 
feed flow-rate  will be further explored to derive adesired optimum operation policy of the studied FBR. of (Table 6-1).

The bioreactor ideal model main hypotheses are the followings [253]: I) isothermal, iso-pH, iso-DO operation; ii) it is self-
understood that nutrients, additives, antibiotics, and pH-control compounds are added initially and during FBR operation to 
ensure the optimal grow of the biomass, as indicated by Chen [268]; iii) aeration in excess over the batch to ensure an optimal 
biomass maintenance, and to contribute to the liquid homogeneity; iv) perfectly mixed liquid phase (with no concentration 
gradients), of a volume increasing according to the liquid feed flow-rate time-varying policy; v) the limits of the liquid feed 
flow-rate ( , FL,j in Table 6-2) are adjusted to not to exceed the bioreactor capacity Max(VL ) in (Table 6-1); vi) negligible mass 
resistance to the transport of oxygen and compounds into the liquid and biomass flocks (if any); vii) GLC substrate is initially 
added in the bioreactor and during the batch according to an optimal feeding policy to be determined; viii) the feed flow-rate 
during the batch, FL,j is varied according to an optimal feeding policy to be determined for every time-arc index ’j’ in the eq. (5).

The dynamic model is hybrid (bi-level) because it connects the macro-state variable of the FBR (biomass X, GLC, TRP, PYR) 
with the cell nano-scale key-variables (GLC, F6P, FDP, PEP, PYR, ATP, Table 6-2, and Table 6--3) of the glycolysis, and of the 
ATP recovery system, and those (TRP, OR, OT , MRNA) of the TRP operon expression (Table 6-4). The all four kinetic modules 
are linked to the macroscopic FBR dynamic model through the formulated mass balances in (Table 6-2, Table 6-3, and Table 
6-4).

 From a mathematical point of view, in a general form, the FBR dynamic hybrid model of (Table 6-2, Table 6-3, and Table 
6-4) translates to a set of 12 differential mass balances (ODE set) written for the key-species of the FBR in the following form: 
Species in the bulk-phase: ’i’ denotes species present in the FBR bulk; ’j’ denotes the FBR feeding time-arcs; j=1…,,Ndiv

 (1)

Key-species inside cells:

                       (2)

’i’ denotes species inside cells, that is (GLC, F6P, FDP, PEP, PYR, ATP) for the glycolysis, and (OR, MRNA, E, TRP) for the 
TRPoperon expression. 

Biomass in the bulk phase.

                                                         (3)

Liquid volume dynamics:

              

                                                                                   (4)

In the eqn. (1), cinlet,i, j refers to the concentration of the species ’i’ in the feeding solution, constant over the time-interval ’j’ 
(j = 1…,, Ndiv ). In the present case only GLC is fed in the FBR during the batch. The reaction rate ri expressions together with 
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the associated rate constants and other details are given in (Table 6- 3, and Table 6-4). In eqn. (1-3), c = vector of species 
concentrations; c0 = initial value of c (at time t=0) given in (Table 6-1); k = vector of the model rate constants. The reactor 
content dilution (determined by the increasing VL in eqn. (4) is due to the continuously added FL term.

In the eqn. (1), GLC and FL are the control variables. The optimal , FL,j to be determined are given on time step-wise values 
over j =1…,, Ndiv time-arcs. For instance, for the adopted Ndiv = 5, the j =1…,, Ndiv time-arcs switching points given in the eq. (5) are: 
T1= t f /Ndiv (12.5 h.); T2= 2 tf /Ndiv (25 h.); T3= 3 t f /Ndiv (37.5 h.); T4= 4 t f /Ndiv (50 h.) ; t f = 63 h. More specifically:

Feed flow-rate policy:

                                                                          (5)

Similarly, for the adopted Ndiv =5 equal time-arcs:

Feeding policy for the GLC solution concentration:

                                           (6)

To not complicate the engineering calculus, the main assumption in the eqns. (5-6) is that: On each time step-wise ’arc’, 
index j =1,…, Ndiv , the control variables , ,L jF and ,

feed
glc jc are kept constant. Of course, the values on each time-arc do not have to 

be necessarily equal to each other.

The ’nominal’ FBR not-optimal operating conditions. Under these conditions of Chen [268], the control variables , ,L jF  
and ,

feed
glc jc   are kept constant on each time-arc at the non-optimal values given in (Table 6-1). Moreover, they are also equal 

between, that is: 

, and

. 

FBR optimal operating conditions. By contrast, under the optimal conditions studied in this paper, the suitable time step-
wise values  , ,4L O LF F− , and those of are to be determined together (simultaneously) to reach the optimum of an objective 
function (maximum of TRP production here).” Multiobjective FBR optimization is also possible (see [6,241]), but is beyond the 
scope of this research.

Rate constants estimation for the HSMDM hybrid model
In short, “the methodology used by Maria [3] to estimate the adopted bilevel modular dynamic model consists in a sequence 

of a trial and error steps, by adjusting the literature information (reaction rate expressions and constants characterizing the 
dynamics of cell metabolic species of interest) to fit the available experimental kinetic data recorded from the above described 
FBR. The sequence of computational steps is summarized over the next sub-sections of this chapter. In total, the developed hybrid 
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structured kinetic model includes 49 rate constants to be estimated from the experimental kinetic curves of 4 observed species 
(GLC, TRP, PYR, X), each species time-trajectory including 17 uniformly distributed recorded points (Figures 6-4, Figures 6-6, 
Figures 6-7, Figures 6-8). This estimation problem is equivalent to a nonlinear programming one (NLP) of high difficulty [29] 
due to its high dimension, and high nonlinearity of the dynamic model and their constraints.

To avoid unfeasible local estimates of the NLP problem, Maria [3] used a sequential approach. A rough estimate of the kinetic 
rate constants for the modules [A+B+C+X] given in (Tables 6-2, Tables 6-3, Tables 6-4) was generated by using a step-by-step 
(module-after-module) approach, with also accounting for the shared species {PEP by modules [A+C]; X, and GLC for modules 
[A+B+X]}. If missing during simulations, the experimental TRP, GLC, or X time-trajectories were taken instead (interpolated 
with the cubic splines INTERP1 facility of MatlabTM package[3]).

Finally, the thus obtained rate-constants were refined by means of a standard weighted least square criterion [29] with 
considering the whole FBR hybrid HSMDM model, with including the all 4 inter-connected modules [A+B+C+X]. To reduce the 
problem size, only 27 independent model rate constants were accounted during estimation (from the total of 49 rate constants). 
A number of (49-27) rate constants have been adopted from the literature [58,62]. Eventually, the all rate constants have been 
refined by Maria [3], and presented in (Tables 6-2, Tables 6-3, Tables 6-4). The thus identified FBR hybrid structured dynamic 
model fit very well the experimental data as indicated by the comparative plots of (Figures 6-4, Figures 6-6, Figures 6-7, 
Figures 6-8).

As a parenthesis, the multi-modal NLP estimation problem solved by Maria [3] is a difficult one, being highly nonlinear, 
with including nonlinear constraints defining a non-convex domain. For such large-size non-convex estimation problems, the 
commercial optimization routines usually encounter difficulties in

reaching the feasible global solution with an acceptable reliability. This is why, a very effective NLP solver has been used 
instead, that is the adaptive random search MMA of Maria [71,72] implemented on the MatlabTM numerical calculus platform by 
Maria [72]. The NLP solution was checked by using several (randomly generated) initial guesses for the rate-constants. A stiff 
integrator (ODE15S routine of MatlabTM package) has been used to solve the ODE dynamic model with a high accuracy.

 A comparison of the model estimated rate constants for the modified T5 E. coli strain from using the FBR experimental data 
of Chen [268], with those of the same model but estimated for experiments using the ’wild’ E.coli strain was presented by Maria 
[3]. As expected, most of the estimated rate constants present

similar values for some general reaction steps. However, due to the mentioned modifications of the used E.coli T5 strain in the 
adopted kinetic model, important differences between the two strains of this bacteria are reported for: (i) The rate expressions 
and parameters of the GLC import system (that is flux V1 in Table 6-2, Table 6-3, and chap.6.5.2, and chap.6.5.3); (ii) The 
biomass growing dynamics (Table 6-2), and (iii) The TRP-synthesis module [C], in both parameters and rate expressions 
(Table 6-4). As another observation, for the nominal (not-optimal) FBR experimental conditions (Table 6-1) used by Chen 
[268], the species dynamics belonging to inside the cell, and to the external liquid-phase tend to reach a quasi-steady-state (QSS) 
that corresponds to a balanced cell growth(homeostasis) in the bioreactor.”

6.5.7. Ways to intensify the TRP production in the FBR

”As revealed by the concerned literature [3,58,59,62,268], intensifying the TRP synthesis strongly depends on a couple 
of internal/external factors, as followings: (a) the glycolysis intensity (mainly, the GLC uptake flux, and the average levels of 
glycolytic species), transmitted via TRP to the module [C] via the shared PEP intermediate; (b) the glycolysis dynamics (QSS, or 
oscillatory behaviour). On the other hand, as pointed out by Maria [39,59], in turn, the glycolysis intensity is controlled by several 
cell internal and external factors, as followings:

a)	 The GLC import system efficiency (flux V1 in (Figures 6-2, 6-3)) is regulated and triggered by the external concentration 
of glucose, and by the subsequent PEP and PYR synthesis (see the kinetic model of (Tables 6-2&6-3). The regular GLC-uptake 
system, that is the PTS translocation system in the ‘wild’ strain (of a complex reaction rate expression discussed by [3,25,43]) 
was replaced in the present studied E. coli T5 strain, as mentioned in the chap. 6.3, with a more efficient one [3,12] able to speed-
up at least 2x the GLC-uptake flux into the cell [268]. Such a modified GLC-import was modelled by a simple Michaelis-Menten 
kinetics in the model of (Table 6-3), by accounting for the well-known GLC substrate inhibition.
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b)	 The GLC quick import and conversion to the precursor PEP requires important amounts of regenerable ATP and, a rapid 
enough ATP to ADP conversion rate, as well as its quick regeneration. The re-estimated rate

c)	 constants of the kinetic module [B] (pink rectangle in (Figure 6-3), and chap. 6.5.3), concomitantly with those of the 
kinetic module [A] from the experimental data coming from the FBR operated with modified E. coli cells implicitly will ensure 
the requirement that A(MDT)P energy system to be able to support the cell glycolysis (see V2, V4, and V6 fluxes expressions 
in (Table 6-3), and the ATP mass balance in (Table 6-2)). On the other hand, limited A(MDT)P energy resources which exist 
into the cell will slow-down the GLC import if the ATP use/regeneration is not working fast enough [300]. Such an A(MDT)P 
resource is linked to the micro-organism phenotype. Here, the total A(MDT)P was adopted (Table 6-1&6-3) at the average level 
recommended by Chassagnole et al.[43].

d)	 Additionally, due to the enzymes ATP-ase and AK-ase characteristics related to the bacteria genome and cell phenotype 
(Figure 6-3), a limited ATP conversion rate can sustain the glycolytic reactions, while the ATP recovery rate is limited by the 
enzymes participating to the A(MDT)P inter-conversion reactions (that is the K and k6 rate constants in the kinetic model of 
(Table 6-3)). This is why, k6 rate constant has been re-estimated here to fit the experimental data, as suggested by Maria et 
al.[59,61].

e)	 At the same time, glycolysis being a systemic process, with a complex regulatory structure, its dynamics (oscillatory, 
transient, or QSS) is also related to the rate constants of their all-involved reactions. Consequently, all these rate constants have 
been considered in the final estimation step of the whole FBR hybrid HSMDM kinetic model. Similarly, Silva and Yunes [301] 
found that glycolysis [QSS, or oscillatory] are only possible if the external concentration of GLC, and the maximum reaction rates 
controlled by the enzymes PFKase and GKase (that control the V1 and V2 reactions in (Figure 6-3)) are within specific intervals. 
From the same reason, the rate constants related to the GLC-uptake system in the modified E.coli cell (modified V1 flux in (Table 
6-3)) were reestimated to match the experimental kinetic data.

f)	 As a corollary of the issue (d), Maria et al. [39,58,59,62] determined the operating conditions leading to glycolytic 
oscillations, or QSS by varying the external factor [GLC]ext; and some internal factors such as the total [AMDTP] level, and the 
k6 rate constant of (Table 6-3). Such an investigation was not necessary here, because no oscillatory process was identified in 
the present operating case.

g)	 Not least, simulations of Maria [3,39] revealed that TRP-synthesis efficiency is also strongly influenced by external 
factors, related to the FBR operating regime, namely:  (i)The cell dilution (taken into account, as ‘ µ ’ in the approached hybrid 
kinetic model (Table 6-2); (ii)The GLC concentration in the external (bulk) phase ( extcglc in (Table 6-2)); (iii) The optimal 
operating policy for the control variables. In this paper, such an operating policy will correspond to the time stepwise variation 
of the feed flowrate [ F

jL  in eqn.(5)], and of the GLC feeding concentration [ ,
feedcglc j in eqn.(6) ].”

The fed-batch bioreactor (FBR) optimization problem

Problem preliminary examination
”To support further engineering calculations, a reasonable extended hybrid modular structured HSMDM model was developed 

by Maria [3], by expressing the macroscopic state-variable species dynamics (i.e., biomass X, substrate GLC, and the product 
TRP) governing the studied FBR performances (Table 6-1), as a function of the key-intra-cellular species dynamics related to 
the cell CCM metabolic fluxes responsible for the TRP synthesis. This link is realized by means of (GLC, X, PEP, ATP) model key-
species (chap. 6.5). The main modification made by Maria and Renea [12], when adopting this hybrid dynamic HSMDM model, 
refers to the introduction of a variable FBR feeding both in the feed flowrate [eqn. (5), and (Table 6-2)], and in the GLC feeding 
solution concentration (eqn. (6), and (Table 6-2)).

The reasonable compromise between the hybrid model details (number of accounted intra-cellular species and reaction 
pathways) and its predictive power has been realised by using only the cell key modules [A-B-C] of interest (Figure 6-3, in 
a lumped form, chap. 6.5.2, chap. 6.5.3, and chap. 6.5.4) linked to the bulkphase macroscopic species (that is suspended X, 
and GLC) (chap. 6.5.2, chap. 6.5.3, and chap. 6.5.5). The fair adequacy of the resulted dynamic model (Table 6-2 - 6-4) vs. the 
experimental data was proved by Maria [3]. Consequently, this hybrid HSMDM model becomes suitable for further engineering 
evaluations of the reactor and bioprocess efficiency, as the case here. 
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The optimal FBR operation derived in this case study no. (2) is more complex than the simple non-optimal (’nominal’) 
operation of Chen [268] from (Table 6-1). Mainly, the feed flowrate and GLC concentration in the feeding solution are no longer 
kept constant. By contrast

a)	 the batch-time is divided in Ndiv (equal time-’arcs’) of equal lengths

the control variables are kept constant only over every ’time-arc’ at optimal values for each time-arc determined from 
solving an optimization problem (i.e., maximization of the TRP production in this case). The time-intervals of equal lengths ∆t 
= tf /Ndiv are obtained by dividing the batch time ft into divN parts 1jt − ≤  t ≤  jt  , where jt = j t are switching points (where 

the reactor input is continuous and differentiable). Time-intervals for the present case study with an adopted divN  = 5 are 
shown in the ’Liquid volume dynamics’ row of (Table 6-2), and in its Footnote (a).”

Formulation of the optimization problem
Selection of the FBR control variables

By analysing the FBR hybrid model of (Table 6-2), ”completed by the reaction rates expressions and parameters given in the 
(Table 6-3&6-4), the natural option is to choose as control variables those with the higher influence on the biological process, 
and easily to handle. In the present case, according to the discussion of chap. 6.5.5, and chap. 6.5.7, two control variables were 
chosen, namely those related to the reactor feeding, that is:

a)	 The substrate ,
feedcglc j  (j=1,…, divN ) whose concentration play the major role in the cell glycolysis efficiency and TRP 

production

b)	  The liquid feed flow-rate , F
jL  (j=1,…, divN ) with GLC solution who is directly linked to the GLC feeding, and responsible 

for the reactor content dilution (the dilution rate being defined as  = /D F VL L .

 In the present optimization strategy, each control variable is kept constant over each time-arc (index ’j’) of the batch. Of 
course, they are not necessarily equal between different time-arcs. For divN  = 5, in total there are 5 ×  2 = 10 unknown eqn. (7) 
to be determined by optimization, under certain constraints, that is (Table 6-2):

                                       ,
feedcglc j  (j=1,…, divN )                                                         (7)

The FBR initial state is given in (Table 6-1) for both inside cell, and bulkphase species. Those of the FBR control, and the 
bulk-phase variables, that is, the initial liquid flow rate, and the substrate initial concentration [as shown in Table 6-2, and eqn.
(5-6) ] are included as unknown variables in the FBR optimization, that is:”

                               ,0 ( 0) ,0F
L LF F t L= = =  in eqn. (5)                                                       (8)

 [GLC]0  = extcglc  (t = 0) = ,0
feedcglc   in eqn. (6)                               (9)     

6.6.2.2. FBR optimization - objective function (Ω ) choice

”By considering the control variables indicated in eqn. (7), the FBR optimization consists of determining its optimal initial 
load, simultaneously with its feeding policy for every time-interval during the batch eventually leading to maximization of [TRP] 
production during the batch, that is: Find the control variables values of eqn. (7-9), to reach

                         MaxΩ ,where: [ ( )]Max TRP tΩ = ,with ( ) [0, ]ft t∈       (10)

The ( )TRP t dynamics in eqn. (10) is model-based evaluated, by solving the ODE dynamic model of the FBR [eqn. (1-6)] over 
the whole batch time (t) ∈ [0, ]ft .”

6.6.2.3. Optimization problem constraints

The optimization problem (10) is “subjected to the following multiple constraints:

a.	 The FBR model eqn.(1-6) including the bioprocess kinetic model (Tables 6-2- 6-4);

b.	 The FBR initial condition from (Table 6-1), excepting for ,0F L  and which are determined from solving the optimization 
problem (the initial guess is taken from the same (Table 6-1));
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c.	 To limit the excessive consumption of GLC substrate, and to prevent the hydrodynamic stress due to the limited reactor 
volume, feasible searching ranges are imposed to the control/decision variables, that is:

 , min( ) 1000inletGLC = (mM) ≤ , , max( ) ( ) 4500inlet j inletGLC GLC≤ = (mM);  (10)

   min, 0.01FL = (L/h) max, ; , 0.04jFL FL≤ = (L/h) (11)

d.	 physical meaning of searching variables:

 , , 00; feed
gl

F
cc jL j >   , (j =1,…, divN  )                                                      (12)

e.	 physical meaning of state variables:

() 0ci t  (i =1,…, no. of species in the model)         (13)

f.	 limit the maximum cell resources in AMDTP

[ ]( ) [ ]ATP t Total AMDTP< of (Table 6-1),

with [ ]( )ATP t  obtained from solving the FBR model eqn. (1-6)             (14)

As an observation, the imposed ranges for the control variables are related to not only the implementation facilities, but 
also to economic reasons, meaning minimum substrate consumption, reduced dilution of the reactor content, and an effective 
bioreactor control.

Selecting the number of time-arcs (Ndiv), and of the operating alternative
The adopted FBR operating policy alternative of chap. 6.6.2.1 is the simplest, and easiest to implement operating mode for 

the two control variables. ”It implies a time stepwise variable feeding of the bioreactor, over an adopted ( divN  = 5 here) equal 
time-arcs that covers the whole batch time. Each time-arc ’j’ (j =1,…, divN ) is characterized by optimal levels of the feed flowrate 
, F

jL , and feed
glcc j  of the GLC concentration

in the feeding solution [see eqn.(7-9)].

This type of FBR operation, despite its simplicity and easy to be implemented, it still includes enough degrees of freedom 
to offer a wide range of FBR operating facilities that, in principle, might be investigated, for instance (see also the discussion of 
Maria [11]):

a.	 by choosing unequal time-arcs, of lengths to be determined by the optimization rule.

b.	 by considering the whole batch time as an optimization variable.

c.	 by increasing the number of equal time-arcs ( divN ) to obtain a more refined and versatile FBR operating policy but 
keeping the same non-uniform feeding policy (that is of the two control variables), as adopted here.

d.	 by considering the search min/max limits of the control variables as unknown (to be determined).

e.	 by feeding the bioreactor with a variable feed flowrate, but with a GLC solution of an uniform concentration over a 
small/large number ( divN ) of time-arcs.

Most of these alternatives are not feasibles, by presenting a large number of disadvantages, as extensively discussed by Maria 
and Renea [12].

The optimization alternative used in this work is the best, because:

a)	 is simple, by accounting onlu two control variables (chap. 6.6.2.1),

b)	 it accounts a relatively small number of time arcs, that is Ndiv = 5. with equal time-arc-lengths of ft  /( divN ) = 63/5 h.

The alternatives (a-e) are not approached here from the following reasons:

a)	 Alternatives (a-c) are not good options, because as ( divN ) increases, the necessary computational effort grows 
significantly (due to considerable increase in the number of searching variables), thus hindering the quick (real-time) 
implementation of the derived FBR operating policy. Additionally, multiple optimal operating policies can exist for the resulted 
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over-parameterized constrained optimization problem of a high nonlinearity, thus increasing the difficulty to quickly locate a 
feasible globally optimal solution of the FBR optimization problem. 

A brief survey of the FBR optimization literature [302,303] reveals that a small number ( divN ) < 10 is commonly used for 
such FBR due to the abovementioned reasons. 

Additionally, as the ( divN ) increases, the operating policy is more difficult to implement, since the optimal feeding policy 
requires a larger number of stocks with feeding substrate solutions of different concentrations, separately prepared to be fed 
for every time-arc of the FBR operation (a too expensive alternative). Also, the NLP optimization problem is more difficult to 
solve because of the multimodal objective function, leading to multiple solutions difficult to discriminate and evaluate. This is 
the case, for instance of an obtained infeasible optimal policy requiring a very high [X], difficult to be ensured due to limitations 
in keeping necessary levels of the related running parameters of the bioreactor (that is dissolved oxygen, nutrients, pH-control 
substances, anti-bodies, etc.). Besides, FBR operation with using a larger number of small time-arcs ( divN ) can raise special 
operating problems when including PAT (Process Analytical Technology) tools [304].

b)	 The alternative (d) is unlikely because it might indicate unrealistic results, as explained at point (c) of chap.6.6.2.3. In our 
numerical analysis, carefully documented upper bounds of control variables were tested to ensure the practical implementation 
of the optimal operating policy.

c)	 The alternative (e) is also not feasible, even if a larger ( divN ) will be used. That is because, it is well-known that the 
variability of the FBR feeding over the batch time-arcs is the main degree-of-freedom used to obtain FBR optimal operating 
policies of superior quality” [3,6,11,12,99]. By giving up with the variable feed flowrate and substrate concentration, sub-
optimally FBR operating policies will be obtained, of low performances.

The used numerical solvers
The time-evolution of the accounted species in the HSMDM model (those from inside cell, and those from the bulk-phase) 

governed by the mass balance of eqn.(1-2) ”is obtained by solving the FBR dynamic model eqn.(1-6) with the initial condition of 
,0 ( 0)j JC C t= =  of (Table 6-1) for the inside cell species, except bulk [GLC]0 to be determined from the FBR optimization, as 

indicated by eqn. (7,9). The imposed batch time ft  , and the optimal medium conditions are those of (Table 6-1). The dynamic 
model solution was obtained with a high precision, by using the high-order stiff integrator (’ode15s’) of the MATLAB™, with 
suitable quadrature parameters to keep the integration error very low. 

Because the math form of the FBR hybrid model eqn.(1-6), the optimization objective eqn.(10), and the problem constraints 
eqn.(11-14) (chap.6.6.2.3) are all highly nonlinear, the formulated optimization problem eqn.(7-10) translates into a nonlinear 
optimization problem (NLP) with a multimodal objective function and a non-convex searching domain. To obtain the global 
feasible solution with enough precision, the multi-modal optimization solver MMA of Maria [29,71,72] has been used, as being 
proved in previous works to be more effective compared to the common (commercial) algorithms. The computational time was 
reasonably short (minutes-hours) using a common PC, thus offering a reasonable quick implementation of the obtained FBR 
optimal operating policy.

The optimization problem solution particularities
The obtained optimal operating policy of the FBR, for the optimization problem formulated in the chap. 6.6.2.2, with the 

control variables of chap. 6.6.2.1, and the constraints of chap. 6.6.2.3, and adopted Ndiv in chap. 6.6.2.4 is given in (Figure 6-6) 
for the feeding policy of the GLC concentration ,

feedcglc j  (j =1,…,5), and in (Figure 6-7-a) for the feed flow-rate , F
jL  (j = 1,…,5). 

”It is to observe that, due to the above formulated engineering problem, the FBR optimal operating policy will be given for every 
time-intervals (of equal lengths) uniformly distributed throughout the batch-time. This optimization problem solution will be 
analyzed in more detail in the next chapter 6.7. 

Such an optimal time stepwise variable feeding of the bioreactor presents advantages and inherent disadvantages. The 
advantages are related to the higher flexibility of the FBR operation, leading to a higher productivity in TRP as proved in the 
next chapter. Beside, the imposed limits of the control variables prevent excessive substrate consumption with any benefit, or an 
excessive reactor content dilution.

As a disadvantage, the FBR-s with such a time-variable control are more difficult to operate than the simple BR-s, as long as 
the time stepwise optimal feeding policy requires different stocks of feeding substrate solutions of different concentrations to be 
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used over the batch. This is the price paid for achieving FBR best performances. This need to previously prepare different substrate 
stocks to be fed for every ’time-arc’ (that is a batch-time division in which the feeding is constant) is offset by the net higher 
productivity of FBR compared to those of a simple BR as below discussed, and pointed-out in the literature [5,6,241,303,305]. 
In fact, the best operating alternative (FBR vs. BR) is related to many others economic factors (operating policy implementation 
costs, product cost compared to its production costs, product price fluctuation, etc.), not discussed here.”

Optimization results and discussion
The obtained optimization problem solution „(of the type discussed in the chap. 6.6.2.6) is given in (Figure 6-6-top, curve 2) 

for the GLC feeding concentrations, and in (Figure 6-7-a, curve 2) for the feed flowrate. Thus optimally operated FBR displays 
the bulk [TRP] dynamics of (Figure 6-8, curve2). The corresponding dynamics of cell glycolytic species during the batch is 
displayed in (Figure 4), while those belonging to the TRP-operon expression in (Figure 5). The dynamics of species present 
in the reactor liquid phase are presented in (Figure 6-6) for GLC, and in (Figure 6-7-c) for the biomass (X). In these figures, 
the species dynamics plotted for the optimal FBR operation (black curves 2, i.e., the model prediction) are compared to those 
corresponding to the nominal, non-optimal FBR operation (blue curve 1 of Maria [3]), and with the experimental blue points of 
Chen [268]. The both operating policies (optimal 1, and the not optimal 2) are obtained with using the same modified E.coli T5 
strain of Chen et al. [268,282].”

 By analysing the resulted FBR optimal operating policy (plots no. 2 in (Figures 6-4-6-8)) compared to those of the sub-
optimal (nominal) operation of Chen [282], several observations can be derived, as followings:

a)	 By using the same FBR but operated under the nominal (non-optimal) conditions of (Table 6-1), the modified E.coli 
T5 strain reported a higher GLC-uptake rate, and a TRP-production much higher (with ca. 50%, [282]) compared to the “wild” 
strain, as revealed by the comparative analysis given in (Table 6-5).

b)	 The efficiency of the optimally operated FBR (this paper) in the TRP production is significantly higher (with ca. 20%) 
compared to the same FBR but sub-optimally (nominally) operated (Table 6-5), even if the same modified E.coli T5 strain was 
employed in both cases. The same conclusion also results by comparing the TRP final concentrations in the FBR bulk given in 
(Figure 6-6, Figure 6-7, Figure 6-8) for the two operating policies (optimal-variable feeding vs.-not optimal/uniform fed). If 
one add to this 20% production increase due to the optimally operated FBR, to the 50% due to the use of the GMO bacteria, it 
results a total of 70% increase in the TRP production compared to the ”wild” strain use.

c)	 The optimal FBR operation reported a similar dilution of the reactor content, as revealed by (Figure-6-7 b) for the two 
operating alternatives of the FBR (optimal, and not-optimal). By contrast, the substrate GLC is better used, as proved by (Table 
6-5). The GLC consumption in (Table 6-5) was computed with the following relationship

                           

 

                                                                                                                                                                                          (15)

d)	 As expected, a higher TRP-productivity requires a higher GLC consumption as the case when using a modified E. coli T5 
strain instead the “wild” type.  As revealed by (Table 6-5), the GLC consumption is influenced by the FBR operating mode, even if 
the same cell strain is used. As indicated by our present analysis given in (Table 6-5), the GLC overall consumption for the optimal 
(variable feeding) FBR operation is roughly similar to that of a non-optimally (uniform feeding) FBR operation. Not surprisingly, 
the optimal operating mode requires a slightly lower GLC consumption (with ca. 6%). That is because it’s better used during the 
batch.

e)	 The comparative analysis of the glycolytic species dynamics in (Figure 6-4) reveals close trajectories (even quasi-identical 
for F6P, FDP species), with any accumulation tendency, for both nominal (not-optimal, curves 1), or optimal (curves 2) FBR 
operation. By contrast, the intermediate PEP species is formed in high amounts but then is quickly consumed in the subsequent 
TRP synthesis, thus tending to reach a QSS. The more intensive GLC import for the optimal FBR operation (curve 2) and its 
successive transformation over the glycolysis pathway, and TRP operon expression is reflected by a higher ATP consumption 
compared to the non-optimal FBR operation. The PYR metabolite is consumed in the TCA cycle and excreted in the bulk-phase 
(fairly predicted by our kinetic model in (Figure 6-4), thus matching the experimental data).
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f)	 The comparative analysis of the TRP-operon expression species dynamics in (Figure 6-5) reveals very close trajectories 
between the two alternative FBR operation. The exception is the excreted TRP, which displays a different dynamics for the 
nominal (not-optimal, curves 1), or optimal (curves 2) FBR operation. Such a result can be explained by the operon expression 
mechanism, involving a tight control via its inhibition terms presented in (Table 6-4).

g)	 The comparative plots of GLC concentration dynamics in the FBR bulk-phase are presented in (Figure 6-6). They indicate 
similar decreasing trajectories for the both investigated FBR operating alternatives: i) nominal (notoptimal, curves 1), or optimal 
(curves 2). Such a result can be explained by the same GLC-uptake mechanism of the modified E. coli T5 strain. In the optimal 
case (curves 2) the GLC consumption is higher, due to a higher TRP productivity. The curve 2 unevenness is linked to the variable 
feeding with GLC of the optimally operated FBR [see the feeding plots in the top part of (Figure 6-6)].

h)	 The comparative plots of the biomass dynamics in the FBR bulk-phase are presented in (Figure 6-7 c). They reveal 
similar increasing trajectories, for the both investigated FBR operating alternatives: i) nominal (not optimal, curves 1), or optimal 
(curves 2). In the optimal operation case, the biomass growth is more intense (reaching a 10% in the bioreactor, close to the 
admissible limit [254,257]), due to a significant higher GLC-uptake, and a better GLC use during the batch, thus offering more 
favourable biomass growth conditions.

i)	 The TRP concentration dynamics in the bulk-phase is plotted in (Figure 6-8) for the both investigated FBR operating 
alternatives: i) nominal not-optimal operation of (Table 6-1), that is curves 1, compared to the experimental data (•, blue) of 
Chen [268], or ii) optimal FBR operation (curve 2). The TRP higher final concentration leads to a higher productivity for the 
optimally operated FBR (see above observation no. a). Such a result proves that the optimal time stepwise FBR feeding [that 
is, the GLC feeding curve 2 in (Figure 6-6-top), and the feed flow-rate policy of (Figure 6-7-a)] is superior to the non-optimal 
uniform feeding of the bioreactor, leading to a better .GLC use, even if, the overall GLC consumption [see the above observation 
no. d] is similar for both nominal, and optimal FBR operation. The better GLC use for the optimal FBR operation is also proved 
by the less produced secondary metabolite PYR in ((Figure 6-4), curve 2), and by a smaller QSS concentration for the PEP 
intermediate ((Figure 6-4), curve 2), quickly transformed in the final product TRP.

Chap. 7. Case study no. 3: the use of a hybrid CCM cell-
scale structured kinetic model coupled with a BR classical 
dynamic model (including macro-scale state variables) to 
maximize both biomass and succinate production by the 
insilico design of GMO E. coli cells.
Symbols used in the chap. 7

jA - reaction affinity [73]
b
aC  - =number of ways of choosing ’b’ objects from a collection of ’a’ objects without regard to order

eqCV  - equality constraint violation index

ineqCV - inequality constraint violation index

ic    - species ’i’ concentration

jf   - individual objective functions

KG - number of removed genes

L -  Lagrange function of the optimization problem

,eq ineqλ λ  - Lagrange multipliers of the equality and inequality constraints

M      -     number of fluxes in the considered metabolic pathway

N      -   number of metabolites in the considered metabolic pathway
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S     -   stoichiometric matrix, ijS i.e. the stoichiometric coefficient of the metabolite ’i’ in the reaction ’j’.

jS    -  synthetic accessibility of an output ’j’, i.e. the minimal number of metabolic reactions needed to produce the component 
’j’from the network inputs

tS      -  total synthetic accessibility index, t i iS S= ∑

T       -   temperature

t        - time

, jv v   -vector of stationary metabolic fluxes, or reaction rate

jy    - Boolean variables

jw   - weights of individual objective functions

Greeks

jβ  - exponent of jv  flux in the NLP objective function

Φ    - objective function
stoich
iλ  - dual variable associated with the stoichiometric constraint involving reaction ’i’

jµ      - dual variable associated with any restriction of the flux v j

Index

low - lower limit

max - maximum

min - minimum

up - upper limit

Observation: species abbreviations together with their chemical formula are given

in the (Table 7-1).

General remarks about CCM kinetic models, and ways used to solve the problem to in-silico design GMO-s of 
industrial interest by using a gene knock-out strategy. 

” The case study presented in this chapter brilliantly exemplifies how a complex HSMDM, including a very extended CCM 
from literature, can be used for both bioinformatics and engineeing purposes. More specifically, this kinetic model was used to 
in-silico design of an E.coil bacterium by using a pareto-optimal front methodology of obtain maximum production of biomass 
and succinate in batch bioreactor (BR)

In general, is well known that bioprocess optimization by genetically modifying the microorganism characteristics is an 
intensively investigated subject due to the immediate economic interest of the large-scale industrial biosynthesis. A large variety 
of alternatives using elaborated experimental procedures, assisted by in-silico cell design based on topological, or dynamic models, 
have emerged [21-23]. By using the extended CCM model of Edwards and Palsson [4] for the wild strain of E. coli, the present 
study in-silico investigates the possibility of using a mixed-integer nonlinear programming (MINLP) approach to determine 
the optimal metabolic fluxes in a design GMO in respect to industrial (engineering) multi objective criteria associated to gene 
knockout strategies. The advantage of the proposed math power-law type criterion is coming from the possibility to account, in 
a simple way, for the flux nonlinear interactions and for the complex constraints of the highly nonlinear optimization problem. 
The combinatorial rule is included in the iterative MINLP solver, while a large number of constraints can increase the chance to 
obtain a reduced set of viable gene-knockout solutions for a given metabolic network. Multiple gene deletion alternatives are thus 
identified, allowing a cell high growth rate with maximizing externally imposed chemical production targets. In the present case 
study, exemplification is made for the case of designing a GMO E. coli cell culture able to realize maximization of both biomass 
and succinate production in a BR, by using a reduced CCM kinetic/topological model from the literature. Comparatively to the 
linear optimization procedures (LP) that solves a combinatorial problem in a bi-level optimization approach, of dimensionality 
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sharply increasing with the number of removed genes, the MINLP alternative combined with the Pareto-front technique leads to 
superior results by considering an adjustable nonlinear influence of fluxes to the optimization goals, its performance being less 
dependent on the number of knockout genes.

 One important industrial application of GMO–s is those of maximizing the production of a target metabolite in industrial 
bioreactors. In the present case study, the problem is to use a structured CCM model of a known wild strain of E. coli to in-silico 
design (by using a theoretical gene knockout strategy) an E. coli GMO able to maximize the production of biomass concomitantly 
with maximization of the succinate (SUCC) production. Succinate is an important biosynthesis product with multiple uses in the 
pharmaceutical and food industry [Wikipedia, 2022].

The thus formulated optimization problem is a multi-objective one (Figure 4-31, Figure 4-32), in the presence of the 
stoichiometric and flux limitation constraints. To solve it, Maria et al. [42] used a structured CCM kinetic model of a moderate 
size for the E. coli cell (wild-strain) proposed by Edwards and Palsson [4] accounting for 72 metabolites (Table 7-1) involved in 
95 reactions (Table 7-2) (see the reduced pathway schemes in (Figure 7-7), and (Figure 7-8)) to in-silico determine what genes 
(and the corresponding reactions) should be removed (the so-called ‘Gene knockout’ procedure) from the bacteria genome to 
realize maximization of both biomass and succinate production by the GMO E. coli cell. These two optimization objectives are 
opposite. Thus, a trade-off solution should be chosen among the geometrical locus of all problem solutions realizing the best 
tradeoff between the two contrary objectives (the so-called Pareto-optimal front, [309]).

Beside simulation of the cell key-species dynamics, such a structured cell simulator of their CCM allows identification of 
genome modifications leading to the improvement of the formulated optimization objectives. Simultaneous removal of several 
genes and, self-understood, of their corresponding reactions (catalyzed by the encoded enzymes of the removed genes) from the 
metabolic pathway of (Figure 7-8) is also possible. 

The below formulated MINLP optimization problem is difficult to be solved not only because multiple solution may exist, but 
the searching domain is not convex, thus reducing the possibility to obtain the global optimum of the problem [310].

To solve this optimization problem, Maria et al. [42] applied an elegant Pareto-optimal front procedure, and a genetic 
algorithm to obtain the Pareto-optimal front (see the curve of Figure 7-8-right) including the geometrical locus of all problem 
solutions realizing the best tradeoff between the two contrary objectives.

The used multi-objective Pareto-front procedure was applied by also accounting of the stoichiometric constraints. Problem 
solutions indicated concomitant removal of 2-4 genes (indicated in parenthesis in (Figure 7-8-right)). Due to the very high 
complexity of the problem (dozens of hours of computing time), only a few number of alternative solutions have been checked. 
Results indicated that a better succinate production is obtained when synthesis of formate, acetate, lactate, ethanol, and glutamine 
are suppressed (see the removed reactions in (Figure 7-8-left)).

Over the last decades, biotechnology and bioengineering is developing new research directions for improving the metabolic 
performances of the microorganisms used in the process industry. The new approach, known in the literature as the concept 
‘From gene to product’ [271] is based on the application of fundamental science knowledge (biology, biochemistry) and 
engineering science approaches (in particular the principles, concepts, rules, and algorithms of the (bio)chemical engineering 
[21-23,74], (Figure 4-2, Figure 4-3, Figure 4-31, Figure 4-32), and the text before eq. (9) of chap. 4.2.1.3, and (Figure 4-20) to 
understand the cell metabolism, species interactions, and the genetic regulatory circuits (GRC) responsible for regulation of 
the cell metabolic biochemical reactions. The result is the possibility to in-silico re-design the cell metabolism to derive novel 
microorganisms, genetically modified (GMO), by conferring new properties and functions to the mutant cells (i.e., desired 
‘motifs’), with applications in various fields, such as improving industrial bioprocesses (biosynthesis, pollutant biotreatment, 
drug industry), designing of novel measure devices (biosensors, bioindicators), or in medicine (gene therapy).

Numerical simulation of metabolic cell processes, at a topological or dynamic (kinetic) level, in a holistic, modular, 
compartmented, lumped or extended approach is necessary to in-silico (based on mathematical models) design of GMO-s, by 
combining knowledge from various modern fields, such as synthetic biology,

systems biology, genetic circuit engineering, molecular bioengineering, but also classical (bio)chemical engineering, and 
nonlinear systems theory [1, 2, 21-24, 174, 278, 311-313]. Living cells are evolutionary, autocatalytic, self-adjustable structures 
able to convert nutrients from environment into additional copies of themselves during the cell cycle. In spite of tremendous 
progresses made in cell process analysis and in development of bio-omics databanks [23], various approaches exist in analysing 
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and modelling the genome replication, cell metabolism, and the multiple regulatory functions of the cell syntheses [21-23]. 
Different analyses are justified by the very high complexity of metabolic processes, implying thousands of species and ten of 
thousands of (self) catalytic reactions, enzymes, co-enzymes, activators, inhibitors, transcriptional factors, proteic-oligomers, 
intermediates, regulatory and signalling chains, motility, membranar and internal transport, gene transcription, morphogenesis, 
and cellular differentiation, all in an inter-connection difficult to decipher. As a consequence, the topological cell models have 
been preferred, on a first step, by applying the so-called ‘Metabolic Control Analysis’ (MCA) [73,314] to investigate the sensitivity 
of the stationary cell system vs. external perturbations.

The in-silico (math-based, engineering approach) to analyse and design novel GMO-s is based on developing dynamic 
simulators of the essential cellular processes (CCM), by applying physico-chemical laws and principles, (bio)chemical engineering 
principles, concepts, and rules, and the algorithms of the nonlinear systems regulation theory, and including both stationary and 
kinetic information on metabolic processes [21-23,74,278]. However, the availability of enzymatic reaction kinetic information 
was fragmented, and consequently such dynamic models rarely include more than hundreds-to-thousand modelled biochemical 
reactions. In contrast, due to very large quantity of qualitative, less structured bio–omic information, the attention turned to 
developing methods to analyse the relative importance of various metabolic events / reactions for the whole cell metabolism. 
In this context, the developed metabolic ‘Flux Balance Analysis’ (FBA), or the ‘Metabolic Flux Analysis’ (MFA) [188], and the 
‘Elementary Mode Analysis’ (EMA) [179] allowed evaluating the cell metabolism efficiency and how resources are used, and 
also the minimum set of enzymes required by the cell growth with preserving the physiological functions and system invariants 
(the so-called ‘modes’ derived from the null space of the stoichiometric matrix [173]). Similarly to EMA, the ‘Extreme Pathways 
Analysis’ (ExPA) [315] determines the ‘solution space’ within which fall all possible steady-state flux distributions of the metabolic 
network, by means of a constraint-based approach (by using the species differential mass balance re-written at QSS, and indices 
based on the maximum reaction rates). The algebraic calculus is based on Kirchhoff’s first law (i.e., the production and utilization 
rate of a metabolite must balance at steady-state), and the second law (i.e.  the free-energy change around a biochemical loop 
must be zero).

 Rigorous statistical methods can be applied to identify the relations between metabolites in a reaction network [316,317], 
by performing a ‘modal matrix analysis’ to assess which metabolites could be grouped (‘pooled’), and by developing reduced 
topological and dynamic models by using these pooled (lumped) metabolites. In the end, they recommend the type of aggregate 
variables to be used for kinetic model development when ‘sufficient’ experimental information is unavailable. Kauffman et al. 
[318] used this ‘modal matrix analysis’ to pool metabolites and to extract the dynamic characteristics of a biological network 
(see their application on the human red blood cell metabolism).They also show how ‘dynamic phase planes, statistical time-
lagged correlation analysis, and temporal decomposition’ can be used to relate the cell biochemical mechanistic details to the 
overall metabolic functions. As such methods are based on analysing the quasisteady-state (QSS) metabolism of a cell (i.e., under-
balanced growth, at homeostasis), hybrid stationary-dynamic models have also been developed. For instance, Mahadevan et al. 
[319] introduced the so-called ‘Dynamic Flux Balance Analysis’ (DFBA), which incorporates rate of change of flux constraints 
from analysing the evolution of the metabolic flux distribution over time. Dynamic interpretations of the flux control (sensitivity) 
coefficients of the MCA have also been studied. e.g., by Tusek and Kurtanjek [47]. The metabolic flux distribution is obtained 
either from the cell kinetic model written at QSS conditions, or by the classical metabolic engineering methods of Stephanopoulos 
et al. [188].

The cell metabolic fluxes are the (enzymatic) reaction rates evaluated at QSS, that is at the cell homeostasis (equilibrated 
growth). 

FBA is a classical but still very powerful method to determine the stationary (QSS) distribution of metabolic fluxes (for a 
known metabolic pathway), and also to relate any change in the environmental conditions, or in the cell structure (including 
genome modification) to the ways by which the environmental nutrients are used inside the cell [188,320,321]. The FBA is 
based on the stoichiometric mass balance constraints under steady-state conditions, of type 0vs =  (where ‘S’ is the stoichiometric 
matrix including the stoichiometric coefficients of the metabolites in the reaction pathway and, is the vector of 
stationary metabolic fluxes, including internal, transport, and the growth fluxes). In the FBA, the exchange fluxes are assigned 
to those metabolites that enter or leave the particular network only, with constraints ranging from negative to positive values, 
accordingly. Those metabolites that are consumed within the network are not assigned any exchange flux value. As the number 
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of fluxes is much higher than the number of measured fluxes and mass balance constraints, the feasible set of solutions is defined 
by the intersection of the null space (i.e., the vector space for v ) and max-min type of constraints imposed to the fluxes, i.e. 

 (where M is the number of fluxes in the considered metabolic pathway) [4]. In principle, 
if a sufficient number of constraints (including the kinetic details) are available, a ‘single point’ solution in the flux-space can 
be obtained. In practice, measurements of some net stationary fluxes allow obtaining the least squares solution of the problem 
with linear constraints, by means of a simple matrix calculation [320,321]. The FBA stoichiometric constraints can also be 
used to correct (reconcile) the measured fluxes affected by gross errors [322]. More elaborated and precise approaches use 
both stationary and dynamic information on the cellular utilization of a C-labelled substrate with the carbon isotopes (either 
13C or 14C) to extract supplementary information on metabolic fluxes in terms of isotopomer distribution, easier to measure 
experimentally [323-327]. In fact, FBA and MCA are closely connected because a modification of the cell stationary fluxes due 
to a certain internal/external perturbation factor (or due to a cell genome modification, e.g., by gene knockout, or by clonning 
procedure) can be transcribed in terms of stationary sensitivities [328].

FBA can highlight the most effective and efficient pathway through the network in order to achieve a particular objective 
function. In fact, multiple stationary flux solutions (homeostatic QSS) may exist according to the environmental conditions and 
the cell adaptation characteristics (dependent on its genome, and GRC-s). The multiple cellular objectives are associated to the 
system action to perform regulatory, metabolic, homeostatic, and phenotypic functions that realize the best tradeoff between 
proliferation and differentiation from one side, and cellular functions and robust growth from other side, with the optimal use 
of the available resources, with shortest transient times, and highest P.I.-s of the GRC-s (see chap. 4.2, 4.4, 4.5, outline 4-1). For 
instance, Selvarasu et al. [329] used a weighted multi-objective optimization rule to identify synergistically switching

pathways for multi-product strain improvement [330].

 To solve this complex optimization problem of getting the optimal geneknock-out strategy to obtain the GMO of desired 
characteristics, various multiobjective optimization strategies have been proposed, because it is still unclear how to combine 
and/or prioritize mutually competing objectives to achieve a true optimal solution, or how to select from the very large 
number of Pareto optimal solutions those that realizes the ‘best’ tradeoff for the cell designers’ preferences. For a multiobjective 
optimization problem, a Pareto-optimal solution is one where any improvement in one objective can only take place at the cost 
of another objective. Consequently, for continuous variables, an infinity of Pareto-optimal solutions might exist [309]. On the 
other hand, a significant re-routing of flux directions and cycle fluxes are reported when switching from one objective to another 
within system constraints. 

Following the review of Nagrath et al. [331] to find an optimal set of stationary net fluxes for a defined number of genes 
encoding the enzymes that participate in the considered metabolic reactions, several methods can be followed. One alternative 
is to use the linear programming (LP) to find the maximum of a weighted linear combination of fluxes of type max( wv  ) [ 
where vector ‘ w ’ includes the chosen weights v ; is the vector of stationary metabolic fluxes (reaction rates), including internal, 
transport, and the growth fluxes] [332,333]. However, in contrast to EMA and ExPA, only a single solution results in the end, even 
if additional linear constraints (other than the stoichiometric balance 0vS =  , where ‘S’ is the stoichiometric matrix including 
the stoichiometric coefficients of the metabolites in the reaction pathway) limiting the fluxes are added to the LP formulation. 
By varying the weights, or by applying an iterative weighting procedure, a still reduced number of Pareto-optimal solutions are 
usually obtained (especially when Pareto-frontier is non-convex). Besides, the weight selection (usually between 0 and 1 for 
scaled objectives) in association to physical meanings is difficult.

A similar route, the so-called ‘Goal Programming’, uses sets of upper and lower weights to optimize the composite objective. 
Even if a larger number of Pareto-optimal solutions are thus obtained, the method suffers from the same disadvantages. 
Alternatively, the ‘Linear Physical Programming’ method [332] replaces the a-priori prioritization of cellular objectives (fluxes) by 
successively relaxing (smoothing) the explicit flux constraints, from very strong (‘highly desirable’) to very soft (’unacceptable’), 
and by minimizing the weighted distances from the solution to the boundaries. The number of classes defining the preference 
degree for each objective is still a subjective decision, somehow equivalent to inspecting various weights in the multi-objective 
optimization but realized in a more comprehensive way. The procedure leads to a larger number of Pareto-optimal solutions due 
to the possibility to gradually relax the associated LP problem with an increased physical significance of the imposed constraints. 

A similar transformation of the multi-objective optimization in a LP problem in the presence of stoichiometric, enzyme 
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maximum amounts, and solvent capacity constraints, was presented by Vera et al. [334]. By performing a nonlinear (logarithmic) 
transformation of the power-law reaction rate expressions (the socalled ‘S-systems’), the steady-state metabolic fluxes can be 
optimized vs. species concentrations and enzyme activities, by applying an evolutionary algorithm [335].Even if attractive, the 
procedure requires the knowledge of kinetic expressions of the involved reactions, while the S-type representation of cellular 
processes, even if computationally convenient, suffer from a number of limitations [169,174].

 Often several Pareto-optimal cell flux solutions are available for the same cellular system, representing design alternatives, 
from which one can subjectively selected to offer the ‘best trade-off ’ among multiple objectives. An important application of 
such a Pareto-optimal technique is the design of mutant cells (GMOs) by testing the effect of gene knockouts on the stationary 
metabolic fluxes of the cell. The computation rule is the following: the enzymatic flux that correlates to the gene that needs to 
be removed is given a constraint value of zero. Then, the reaction that the particular enzyme catalyzes is completely removed 
from the analysis. In such a way, a large number of strategies of gene deletions can be tested, by inspecting the feasibility of each 
problem solution (obtained GMO) in respect to certain constraints or objectives. 

The simplest approach of solving this GMO design problem, by using an optimal gene knock-out (deletion) strategy is the FBA 
, able to inspect the successive deletion of only one gene [4,336], by retaining the optimal solution vs. a certain linear objective 
function. The simultaneous deletion of more than one gene leads to a very extended combinatorial problem, a total number of 

KG
MC  trials being necessary for removing KG genes from the total of M genes. For such a multiple gene removal case, a more 

sophisticated optimization procedure, described in this chapter, should be applied. 

It is also to mention that while the gene knockout procedure is trying to drain the cell resources to the over-production of 
the desired metabolites by cutting alternative metabolic pathways, other proposed cell optimization techniques try to re-design 
complex regulatory circuits (GRC-s) to compensate the removed cell functions. 

To solve such more difficult gene-deletion (knockout) in-silico problems, a completion to FBA is the so-called ‘minimization 
of metabolic adjustment‘ method (MOMA) [332]. MOMA employs quadratic programming to identify the closest point in the 
flux space to the FBA wild-type point, compatible with the gene deletion constraints. MOMA displays a significantly higher 
correlation than FBA, being of use for predicting the behavior of the perturbed metabolic networks, whose growth performance 
is in general sub-optimal. However, as observed by Wunderlich and Mirny [337], the FBA, EMA, and MOMA are unable to separate 
the role of topology and other parameters in the network objective function, while EMA is computationally very expensive and 
provide ‘little insight into why certain mutations are lethal, whereas others are tolerated’. They proposed to use the so-called 
’total synthetic accessibility index’ , t j js S= ∑ evaluated from summing the synthetic accessibility of the outputs, defined as 
the minimal number of metabolic reactions needed to produce a component ‘j’ from the reaction network inputs. If an enzyme 
knockout does not change the index ts  , that is the biomass can be produced without extra metabolic cost, then this mutant is 
viable. If ts becomes infinite, at least one essential component of the biomass cannot be produced from network inputs, and 
therefore the gene knockout leads to a lethal phenotype. 

Finally, it is to observe that the topology plays a central role in determining network function and malfunction [337], and the 
viability of the sets of mutants. However, the gene knockout in-silico procedure through FBA is intrinsically incomplete as long 
as it is difficult to separate the contribution of topology from the contributions of kinetic and equilibrium characteristics of the 
cell CCM-system. Also, inferences among genes are not accounted for, while validation of FBA conclusions by means of simulating 
GRCs, and dynamic response to perturbations is necessary [20,174,280,312]. 

Because the main bioengineering objective through gene knockouts (usually maximization of production of a certain 
metabolite, i.e. the so-called ‘dual’ problem) is associated at a cellular level with a biological objective (usually maximization of the 
biomass yield, i.e. the so-called ‘primal’ problem), one worthy alternative is to formulate the problem as a bi-level programming 
problem [310]. Such an approach is justified by the observation that the yields for some metabolites are far below their theoretical 
maximum given certain nutrient flux entering into the cell. Linear constraints of the bi-level optimization problem impose fixed 
substrate uptake, fulfillment of the network stoichiometric balance, upper/lower limits of fluxes, and other balance relationships 
derived from the physical meaning of the model variables. Following the mathematical rules, the ‘primal’ problem, aiming at 
maximizing the bioengineering objective subjected to maximizing the cellular objective in the presence of linear constraints, is 
equivalent to solving the associated ‘dual’ problem, of LP type, aiming at maximizing only one composed objective function in 
the presence of the original and additional constraints. When a gene knockout strategy is investigated, Boolean variables are 
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added to each flux, leading to a mixed-integer LP (that is the MILP) problem. By limiting the number of knockouts, the solution 
consists in a set of retained genes and the associated optimum values of stationary fluxes. Exemplification of this procedure 
(‘opt Knock’ of Burgard et al. [310]) is made for optimizing production of succinate and lactate in E. coli GMO cells by using the 
CCM extended model of Edwards and Palsson [4], accounting for 436 species involved in of 720 reactions (Figure 7-7). Even if 
effective, application of opt Knock requires solving a very large combinatorial problem, and multiple solutions might exist for the 
same multiple optimization objectives. Besides, the right choice of max/min boundary values of the auxiliary variables increases 
difficulties in applying this procedure. 

The aim of this chapter is to present the original approach of Maria et al. [42] in using a MINLP numerical optimization 
procedure in solving the above formulated multi-objective cell metabolism optimization problem, in a nonlinear power-law 
formulation  , by including the adjustable influence of fluxes for reaching the composite goal [here v is the vector of 
stationary metabolic fluxes (reaction rates), including internal, transport, and the growth fluxes]. Even if being similar to the 
weighted multi-objective and goal optimization (if a logarithmic transformation is applied) [309], this procedure includes the 
possibility to account for nonlinear interactions among fluxes and nonlinear constraints without losing any property by math 
transformations. The MINLP procedure was then used to identify multiple gene deletion combinations that allow a maximum cell 
growth rate with maximizing externally imposed chemical (product) production targets, as an alternative to the unsatisfactory, 
and too computative combinatorial MILP procedure. The modified MINLP algorithm below presented is simple to be applied, 
without requiring specification of auxiliary variables, and easily extendable to solve a large variety of nonlinear multi-objective 
optimization problems of the same type, in a relatively simple way [73,334,338]. 

Exemplification is made here for the case of finding sets of knockout genes that will ensure simultaneous maximization 
of succinate (SUCC, target metabolite) and biomass production in E. coli GMO cells, by using the CCM model of Edwards and 
Palsson [4] (the reduced variant of (Figure 7-1, Figure 7-7, and Figure 7-8) accounting for 72 species (Table 7-1) involved 
in 95 reactions (Table 7-2). As multiple feasible solutions exist for this optimization problem, a step-by-step increase of the 
number of constraints might lead to a reduction in the gene knockout alternatives when using the MINLP formulation. Even 
if only linear constraints have been included in the tested case study, the nonlinear multi-objective formulation can be easily 
extended by accounting for flux interdependencies, the use of energy charge, carbon and nitrogen recoveries at steady state, or 
cell regulatory / thermodynamic properties” (chap. 4.2, 4.4, 4.5), thus allowing to reduce the number of viable GMO–s found as 
feasible solutions of the math problem. A step-by-step experimental-computational (LP) procedure to design and check GMO of 
interest was proposed by Orth et al. [339] (Figure 7-9). 

The reduced CCM model of Edwards and Palsson [4] for the wild-strain of Escherichia coli 
In fact, ”for a common micro-organism, the glycolysis together with the phosphotransferase (PTS)-system, or an equivalent 

one used for the GLC-uptake into the cell, and with the pentose-phosphate pathway (PPP), and with the tricarboxylic acid cycle 
(TCA), all these are part of the so-called central carbon metabolism (CCM), (Figure 4-23, Figure 7-1, Figure 7-8) [42]. 

The stoichiometric reduced model of the CCM of E. coli K-12 is those proposed by Edwards and Palsson [4], and Orth et 
al. [339]. The reduced variant includes 72 metabolites (Table 7-1) participating in 95 reactions (Table 7-2, and Figure 7-1), 
the stationary net fluxes being limited by specified minimum / maximum values (that is -1000 / +1000 mmol/gDW/hr.). The 
fluxes correspond to an equilibrated cell growth, with a glucose uptake rate of –10 mmol/gDW/hr, and an oxygen uptake rate 
of –1000 mmol/gDW/hr.. The model was obtained by lumping the extended CCM dynamic model of Edwards and Palsson [4] 
that includes 720 reactions and 436 metabolites. In the extended variant, unconstrained uptake routes for inorganic phosphate, 
carbon dioxide, oxygen, sulphate, potassium, sodium, and ammonia are provided, and the capacity constraints were used to 
define the reaction reversibility. Lower limits for the internal fluxes were set to zero for all irreversible fluxes, and all reversible 
fluxes were upper bounded at a large value. Transport fluxes for metabolites not available in the media were always restricted to 
zero, while forward and backward reactions result in positive and negative fluxes respectively. 

Due to the applied lumping procedure, the reduced CCM model approached here contains a lot of overall reactions that 
sum ‘elementary’ metabolic steps. For instance, the stationary rate of biomass production , biomassv = 13v ,results as a sum of many 
contributory steps leading to the overall stoichiometry given in (Table 7-2) marked with green. 

In fact, for the present CCM optimization analysis, maximization of only two fluxes are of interest, that is: (obj1) maximum of 
biomass production, biomassv = 13v , in (Table 7-2) marked with green. 
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(obj2) maximum of SUCC production, succinatev  = 39v , in (Table 7-2) marked with yellow. 

Burgard et al. [310] solved this dual-optimization problem of succinate production maximization ( succinatev  ), subjected to 
biomass production maximization ( biomassv  ) in the presence of linear constraints of the pathway stoichiometry, based on the 
stoichiometric mass balance constraints under steady-state conditions, of type  (where ’ S ’ is the stoichiometric matrix 
including the stoichiometric coefficients of the metabolites in the reaction pathway, and v  is the vector of stationary metabolic 
fluxes, including internal, transport, and the growth fluxes).  

In such a way, Burgard et al. [310] obtained a large number of gene knockout solutions, such as: (a) removed genes no. 
{61,73}, or (b) removed genes no. {1,10,61,73} (Table 7-2) for the reaction/flux numbers leading to a GMO with a reduced CCM, 
but with succinatev  = 11 mmol/gDW/hr, and biomassv  = 0.3 1/hr.; or (c) removed genes {3,50,82,83} leading to a GMO with succinatev  
= 15 mmol/gDW/hr., and biomassv = 0.16 1/hr., etc. see the representation of some solutions in (Figure 7-2). On the other hand, 
the size of the used MILP combinatorial problem increases extremelly much with the number of removed genes. Simulations and 
experiments also revealed existence of a non-linear relationship between succinatev and biomassv  , that is large succinatev  (of maximum 
16.4 mmol/gDW/hr. in the studied cell growth conditions) corresponds to a too small biomassv , and vice-versa. It clearly appears 
that the two optimization objective (obj1), and (obj2) above formulated are opposite. Consequently, it was concluded that several 
sub-optimal solutions can exist when designing a mutant cell, according to the considered sets of removed genes.”

 This is why it is of high interest to solve this multi-objective optimization problem in a more systematic way. The below 
chapters are dealing with presenting the original and effective approach of Maria et al. [42].

Formulate the optimization problem to maximize the SUCC and biomass production in a BR 

When designing an optimal phenotype (GMO) for a cell of known characteristics (of a CCM with known relationships with 
the cell genome and proteome), ”a bi-/multi-objective cell flux optimization problem should be formulated, by accounting for 
several goals [340]

a)	 maximize ATP production to determine conditions of optimal metabolic energy efficiency.

b)	 minimize nutrient uptake by determining the conditions under which the cell will perform its metabolic functions while 
consuming the minimum amount of available nutrients.

c)	 minimize redox production by finding conditions where the cells operate to generate the minimum amount of redox 
potential, and minimum adenylate energy charge (ATP, ADP, AMP) necessary to draw the inner cell syntheses.

d)	 minimize the Euclidean norm of fluxes, i.e. the sum of the fluxes allowing to channel the metabolites as efficiently as 
possible through the metabolic pathways.

e)	 maximize target metabolite production, by optimizing the cell capabilities to produce a certain compound of practical 
(industrial) interest.

f)	 maximize the biomass production ensuring the cellular network to evolve and proliferate.

It is to observe that the last two goals, i.e. maximize the biomass and metabolite production, are competing (opposite) objectives 
in a cell due to the requirement of using the resources for a maximum responsiveness to the environmental changes rather than 
for the overproduction of a specific compound. In a design GMO strain, a certain tradeoff should be realized between cell growth 
and forced metabolite production to preserve the cell growth and proliferation objectives. 

Referring to the CCM model of (Table 7-1, and Table 7-2), the single level optimization problem can be formulated in terms of 
biomass production maximization (’cellular objective’), in the form: 

 (1)
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In the eq.(1), M = 95 fluxes and N = 72 metabolites corresponds to the considered CCM metabolic system (the flux jv numbering 
correspond to those of (Table 7-2, and Figure 7-1). The way to formulate the stoichiometric matrix (’S’) and the species mass 
balance for the considered metabolic reactions under stationary conditions, in the form of a linear set  is exemplified in 
the Chap. 7.7. 

Other objectives can be considered when solving the CCM optimization problem, with a similar formulation, for instance 
a linear combination of target metabolic fluxes [4,332]. Successive solutions derived under various environmental conditions 
allow for instance to determine the correct sequence of byproduct secretion under increasingly anaerobic conditions [341]. 
When the same objective is associated with gene knockout alternatives, estimated fluxes can offer valuable information on the 
essential genes in the cell (lethality of gene knockout) [4,332]. Additional linear constraints to the optimization problem usually 
account for environmental requirements (e.g.nutrient limitation) [333]. 

When not only the ’cellular objective’ (biomass) is optimized, but also the production of a certain metabolite (the so-called 
’bioengineering / chemical objective’), a bi-level optimization problem results (e.g. by using succinate as target metabolite), of the 
following math form: 

 

                                                                                                                                                                                 (2)

Where _ argbiomass t etv is the minimum level of biomass production which has to be realized by the ‘optimized’ cell. The notation 
’s.t.’ (that is ’subjected to’) denotes the problem constraints. The problem (2) unknowns are the CCM fluxes [ 1,..., Mv v ]. One 
alternative to solve this ’primal’ problem is to transform it in an equivalent LP problem (called ’dual’ problem), of the following 
form: 

 (3)                                                                                                                                                                                                  

In the eq.(3), the following notations have been used

 ’secr_only’ denotes transport fluxes for metabolites that can only be secreted from the network;

jµ  = dual variable associated with any restriction of the corresponding flux 

jv in the primal problem; 
stoich
iλ = dual variable associated to the stoichiometric constraints. 

Such a transformation of the problem eq. (2) into the problem eq. (3) is possible due to observation that if the optimal 
solutions of primal and dual problems are bounded, their objective functions must be equal at optimality [342-345]. 
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However, the previous LP problem eq.(3) raises several complications when additional constraints are formulated and/or 
extended cellular CCM kinetic/stationar model is approached, making the problem preparation very laborious, and computational 
very intensive to solved it. For instance, in the Burgard et al. [310] formulation, two additional constraints have to be added 
to the problem eq.(2) while finding the optimal gene knockout strategy. In this former case, the problem eq.(2) requires also 
searching for the optimal additional Boolean variables {0,1}jy ∈  that multiply the fluxes (that is j jy v instead of jv  ) which, in turn, 
will complicate the formulation eq.(3). Besides, other LP algorithm disadvantages have to be mentioned, as follows: (i) the LP 
transformation of primal problem is valid only for the bi-level optimization and not for several objective functions (as usually 
is the case); (ii) exclusion of nonlinear constraints; (iii) effective solution of the dual LP problem requires the correct setting of 
upper/lower bounds of the dual variables, i.e. .min ,max,j jµ µ  ; (iv) when more than 2-3 genes are simultaneously removed from the 
CCM network, the resulted LP combinatorial problem becomes extremely computational intensive, and practically ineffective 
and impossible to be solved for cells including a large number of genes. 

Consequently, to solve the multi-objective LP or NLP problems to obtain a GMO with a reduced number of genes but with 
optimized characteristics, various alternatives can be approached, such as: (a) min-max procedure (that is the maximum 
production of the target metabolite, with minimum violation of the stoichiometric constraints), or (b) single-composite function 
that includes all the objective functions multiplied by given weights [309], or (c) the Pareto-optimal front method (this chapter) 
[6,309,346-351]. There is no general approach for such a choice because the decision is case-dependent [334]. For instance, 
if the individual objective functions jf are scaled in the same range, a composite objective function can be defined as a linear 
combination, where the adopted weights usually satisfy the conditions  [4,309]. However, nonlinear 
combinations of individual jf are also possible, depending on their physical significance [334]. 

For instance, one possibility retained for comparison is to transform the two objectives of the problem eq.(2) in a single level 
LP optimization by using the following composite function:

             (4)                                                                                                                                                                                    

   

The optimization problem eq.(4) considers the two main objectives, that is 

(obj1) maximum of biomass production biomassv = 13v , in (Table 7-2) marked with green. This macro-scale variable is related 
to the performances of a BR, or another bioreactor. 

(obj2) maximum of SUCC production, succinatev = 39v  , in (Table 7-2) marked with yellow. 

The weights { 39w , and 13w } in the composite function LPΦ  of eq.(4) are adopted according to the relative importance given 
to the two oposite objective functions (that is (obj1) , and (obj2) ).

 For the present case study, Maria et al. [42] investigated another route to achieve the multi-objective optimization of cell 
fluxes, by formulating a nonlinear programming (NLP) problem, with using a power-law type composite objective function, of 
the following form: 

                                                                                                                                                                                           
(5)

The individual fluxes can be included ( 0jβ ≠  ) or not ( 0jβ = ) in the optimization rule, in an (un)scaled form, with the 
exponent jβ sign and magnitude depending on the maximization / minimization goal, and on its relative importance in the CCM 
metabolism. As another observation, when some fluxes (index ‘exp’) are measured, a supplementary equality constraint should 
be added to eq.(5), of the form , where ‘unk’ index denotes the unknown vector of fluxes. 
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In fact, if a logarithmic transformation is applied to the goal function NLPΦ  in eq.(5), an equivalent weighted multi-objective 
LP optimization problem of type ’MAX( wv ) ’ is obtained. However, the NLP formulation is not fully equivalent with the LP one, 
as long as the linear transformation distorts the flux contribution to the main goal, and it can not represent the nonlinear inter-
dependencies among fluxes. For instance, various nonlinear objectives of power-law type can be formulated according to the 
desired modification of phenotype, e.g.: (i) maximum of succinateν  with minimum of biomassν , that is ’Max  
(ii) maximum of a series of scaled fluxesvk vl vm  ,in the composite form of 

, where denotes the Euclidean norm of the vector ’v’ including all the CCM fluxes; 
(iii) maximum of a certain metabolic flux related to the corresponding overall production of entropy into the cell, that is 

 (where: = reaction affinity, T = absolute temperature). For other nonlinear objectives and 
constraints of the above mentioned CCM optimization problem, the reader is referred to the work of Heinrich and Schuster [73]. 
Besides, the advantage of the NLP formulation consists in the possibility to also include nonlinear constraints derived from the 
imposed properties of the metabolic pathway, by accounting for the gene inferences [313], for regulatory network properties 
[21-23,174] (chap. 4.4, 4.5), or other thermodynamic properties [330]. 

In the present case study, Maria et al. [42] used a particular form of the NLP problem eq.(5)for maximizing both the succinate 
and biomass positive fluxes, of the form:

           (6)                                                                                                                                                                            

The degree of freedom (DF) of the NLP problem depends on the number NEQ < N of equality constraints of the stoichiometric 
balance set (here N = number of metabolites in the considered CCM metabolic pathway). The constraints are 

accounted during the solution search in a simple way, for instance by evaluating the constraint violation degree by means of two 
original indices: , eqCV and 2

ineqCV  , defined as followings:

                                                                                                                        (7)

 When solving the NLP problem eq.(6), the constraint violations ’penalize’ the objective function by means of an extended 
Lagrange function, of the form:

     (8)  

 where the Lagrange multipliers  are chosen to be zero if the constraints are not violated, and receive positive values 
(constant, or increasing / decreasing numbers according to the search failure / success) [346,352]. The constraints are scaled 
according to the objective function range. In the present study, as in eq. (6) is the product of two cellular fluxes, squared 
indices of constraint violation are included, with a uniform weight of 

To make our results comparable to similar case studies from literature, the considered constraints in the optimization 
problem of biomass and target metabolite SUCC production maximization are those indicated by Burgard et al. [310] for the 
extended CCM model, but adapted to the reduced CCM model structure of (Table 7-1, Table 7-2, and Figure 7-1), that includes 
the glucose uptake balance, maintenance requirements, and the minimum level of biomass production. In math terms, such 
requirements are translated as followings (with the notations of (Table 7-2):

         (9)     

                                                                                                                                                                               

 where: M = the number of considered fluxes (stationary reactions) in the CCM metabolic network (that is 720 in the extended 
model, and 95 in the reduced model); N = number of metabolites (that is 436 in the extended model, and 72 in the reduced 
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model); jν = generic metabolic flux; ijS  = stoichiometric coefficient of the metabolite ’i’ in the reaction ‚j’. In the previous 
formulations, _glc uptakeν  is the basic glucose uptake scenario, _ intatp ma enanceν is the non-growth consumption flux associated to 
the ATP maintenance requirement, while _ argbiomass t etν is the minimum level of biomass production imposed by the GMO designer 
(theoretically being higher than zero, or even zero) [310]. Adaptation of these metabolic constraints reported some modified 
relationships due to the used lumped species and reactions. Thus, the equality constraint   refers 
to phosphotransferase (glc-D[e] + pep[c] → g6p[c] + pyr[c]) and glucokinase ([c] : atp + glc-D → adp + g6p + h) fluxes of the 
extended CCM model. In the reduced CCM model ptsν , refers to GLC import via PTS-reaction (system) in (that is the 50ν flux in 
(Table 7-2). As long as the E. coli core CCM reduced model does not include the glk/glucokinase flux, this constraint reduces 
to [  ] constraint as long as  is not accounted for. The constraint   was 
implicitly considered during the MINLP optimization problem eq. (7-9) of maximum biomass production so, _ argbiomass t etν in the 
constraints eq. (9) is usually set to zero.”

Solving the FBA optimization problem to determine various gene knockout strategies to design 
optimized GMO-s 

”To determine possible optimal GMO phenotypes of the analysed E. coli microorganism, Maria et al. [42] applied a FBA coupled 
with the multi-objective optimization of type eq.(7-9), by estimating the optimal stationary fluxes [ 1.... Mν ν ] associated with a 
proposed sub-set of genes encoding the enzymes participating to the obtained reduced CCM metabolic pathway of the design 
GMO (due to the applied gene knock-aut procedure). To point-out the importance of the number and structure of the problem 
constraints, a step-by-step strategy to identify the optimal E. coli mutant for biomass and succinate production was developed. 
By setting the number KG of genes which have to be removed from the cell, the basic MINLP rule consists in simultaneously 
finding the removed genes and the optimal fluxes, in a problem formulation similar to eq.(6-8), that is: 

                                                                                                                                                                                    (10)

When one gene (and its encoded enzyme, index ‘J’) is removed from the cell CCM, the associated flux ( jν ) is also omitted 
from the reaction pathway, by simply setting to zero their associated Boolean variable jy =0 . The obtained GMO E. coli mutant 
presents optimized fluxes from the point of view of the engineering requirements [the above (obj1), and (obj2)] , but not 
necessarily will preserve the main cell functions that ensure the cell maintenance and survival. Consequently, every thus derived 
math solution has to be metabolically viable, being

interpreted as physical meaning before its validation.”

Solving gene knockout LP, or MINLP problem by only accounting for the stoichiometric constraints: 
One starts to solve the optimal GMO design problem eq. (6-9) by finding optimal fluxes in the E. coli cell in the presence of only 

basic stoichiometric balance set constraints  of the CCM metabolic pathway given in (Table 7-2). ”The stoichiometric 
matrix ’S’ of size [N = 72 species ×  M = 95 reactions], in the MatlabTM  code is presented in (Table 7-4).

 The problem is solved by using both the LP formulation eq. (4) (with the adopted weights succinate biomassw w= =1), and the NLP 
formulation eq.(5) with the CONSTR set of constraints and sβ  =1. The results, presented in (Figure 7-3), indicate practically the 
same (unique) solution, irrespective of the used method. As expected, the resulted very large values for the reversible succinate-
to-fumarate transformation (fluxes #44 and #89) is the main reaction responsible for succinate production maximization. But 
this theoretical solution does not necessarily ensure the cell viability, and other dynamic / thermodynamic constraints should 
be further considered. 
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When genes are in-silico knockout from the cell CCM, the optimal GMO. design problem solution ceases to be unique, and 
several alternatives might exist. Theoretically, a number of KG

MC mutant cells results from removing KG genes from the total of 
M. For KG =1, the number of knockout trials equals the number of genes (M) controlling the CCM. This number increases sharply 
with KG, following. an approximately power law given by the Stirling formula  [353].

If one successively removes one gene (from gene #1 to gene #95, KG = 1), every time evaluating the optimal fluxes with the 
criterion eq. (4), the obtained optimal LP solutions are presented in the (Figure 7-4-a), by using the LP solver of MatlabTM math 
computational platform [347]. It is to observe that a large number of

alternatives exhibit the same performance index, that is
LP succinate biomassν νΦ = + = 16.384 mmol/gDW/h, even if two additional 

constraints  and have been added (Figure 7-4-b). This result is similar to those of Edwards and Pals 
son [4] suggesting that ’a large number of the central metabolic genes can be removed without eliminating the capability of the 
metabolic network to support growth under the conditions considered’, due to the interconnectivity of the metabolic reactions. 

The same single-gene knockout rule was repeated by using the MINLP.criterion eq. (10) with the basic stoichiometric 
constraints included in the Lagrange function ‘L’. The results, presented in (Figure 7-5), indicate the same conclusion as those 
obtained from using the LP criterion, that is a large number of genes can be removed by keeping the succinate production 
at the highest level of 

succinateν =16.384 mmol/glhf (Figure 7-5-b). The inequality constraints are all the time fulfilled. while the 
violation index  of equality constraints is roughly negligible (more precise solutions are possible but with the expense of 
a significant supplementary computational effort). Slightly violation of equality constraints ( index) is sharply penalized by 
large Lagrange functions L in the (Figure 7-5-c).  It is to remark that many removed genes lead practically to the same optimal 
fluxes into the cell, as for instance the removed genes #1 and #10 in (Figure 7-6) (corresponding to the reactions #1 and #10 in 
(Figure 7-1). These removed reactions block the EtOH production (an unnecessary metabolite), being also removed in one of the 
mutant E. coli cells obtained, and experimentally validated by Burgard et al. [310]. 

To investigate multiple gene knockout alternatives, two or four genes have been concomitantly removed from the CCM 
pathway when solving the MINLP problem eq. (6-9). It is to observe that the number of possible solutions of the same quality 
increases very much (by displaying almost the same objective function ’L’)229 Some of the in-silico mutant E. coli cells obtained by 
means of MINLP criterion eq. (10) are presented in (Table 7-3). As marked in the (Figure 7-1) some of the solutions are expected, 
for instance the use of cell resources for succinate production maximization by blocking formation of ethanol (removed fluxes 
#1 and #10), lactate. (removed flux #61), formate (removed flux #73), glutamine (removed fluxes #51and #54) etc. (see some 
of these solutions in the Figure 7-2). Also, from the mathematical point of view it appears that F6P production by two alternative 
routes (#50 and #45) is redundant, and one of them should be removed. Such multiple solutions require a physical meaning 
evaluation to check viability of each in-silico obtained GMO (mutant) E. coli cell. For instance, the removed gene set # (82,83) is 
not viable as long as the flux #82 is responsible for the PYR production, and its elimination will not ensure the essential energetic 
TCA pathway (Krebs cycle) of the cell. As the visual inspection of a larger number of solutions is difficult for complex cell system 
cases, an automatic rule is preferable, by using, for instance, the Wunderlich and Mirny [337] synthetic accessibility concept to 
identify unfeasible cases of non-viable cells CCM pathways when products cannot be synthesized from the network inputs. As 
another observation, Burrard et al. [310] have found several Pareto-optimal GMO in-silico solutions that maximize the succinate 
production by eliminating the oxygen uptake reactions (#36, #70). This alternative was not identified by our procedure after 
a significant large number of trials, probably due to the reduced form of the CCM model requiring the use of oxygen in the Q8 
production (#16), which is essential for the here considered CCM metabolism. 

From the numerical point of view, solving the associated MILP, (eq. (4) plus CONSTR of eq. (10)) or LP (eq. (4)) multi-
objective problem leads to an extended combinatorial calculus when optimizing the sum of fluxes with also removing certain 
genes from the CCM. The advantage of using the MINLP formulation eq. (6-9) is coming from the concomitant random search for 
optimal fluxes and gene knockout alternatives during the same iterative rule, with the risk of missing gene knockout alternatives 
of similar quality in terms of the objective function. This risk can be reduced when additional constraints are added to the 
optimization problem, or when a suitable flux prioritization (by means of the exponents jβ ) is formulated. 

Despite the large number of advantages, the proposed MINLP formulation inherently presents some limitations. Similarly, to 
the weighted multi-objective and goal optimization cases [29,309], the proposed criterion leads to a reduced number of Pareto-
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optimal GMO solutions (see the extended discussion of Nagrath et al. [331]). Two such Pareto-optimal solutions, corresponding 
to the removed gene set (1,10,61,73) are displayed in the (Figure 7-2). An increased number of solutions can be obtained if a 
repeated application of the MINLP procedure is performed by using different sets of weights / exponents (varied within certain 
limits), with the expense of a considerable supplementary computational effort.”

Solving Gene Knockout LP or MINLP Problem by Accounting for the Stoichiometric Constraints, and 
Some Additional Constraints

To check the effect of introducing new constraints to the MINLP optimization problem in order to reduce the large number 
of gene knockout set of solutions, three additional constraints eq. (9) suggested by Burgard et al. [310] are added to the multi-
objective optimization problem eq. (10). “Some of the MINLP solutions, for the case of 2, or 4 simultaneously removed genes 
from the wild-type CCM of the E. coli cell, are presented in (Table 7-3). The results reveal several conclusions, as follows:

a)	 Multiple GMO-s are obtained for the E. coli as possible gene knockout alternatives from its CCM, in order to simultaneously 
maximize the biomass and succinate production, valid for removing one, two, four or more possible genes from the CCM 
metabolic network. When deriving the Pareto-optimal front solutions (two of them are represented in (Figure 7-2) for the all 
removed genes #1,#10,#61,#72), the slow convergence of the used MINLP algorithm may lead to approximate (sub-optimal) 
solutions also, as indicated by the approximate fulfilment of the equality constraints, with an acceptable average error of [10-6 
up to 1.5] flux units compared to the feasible range of fluxes [-1000, +1000]. However, the GMO sub-optimal solutions can be 
easily identified from the constraint fulfillment analysis and eventually removed. The solver used by the MINLP algorithm was 
the adaptive random search of Maria [29,71,72], and a modification of the Nelder-Mead algorithm (routine ‘FMINSEARCH’ of 
the Matlabe computational platform [347]. The use of other solvers (e.g., Evolutionary algorithms [71,72]) might improve the 
solution quality, but with the expense of a much larger computational effort. 

b)	 By inspecting the most relevant GMO solutions given in (Figure 7-2, and Table 7-3) it is to observe that high biomass 
production rates correspond to low production in succinate, and vice-versa. As previously mentioned, these two optimization 
objectives are opposites. These results obtained by Maria et al. [42] are in a perfect agreement with the experimental data 
and findings of Burgard et al. [310] from (Figure 7-2). The obtained Pareto-optimal front of (Figure 7-2) displays a nonlinear 
dependence between the two opposite stationary fluxes, that is: 

                (obj1). maximum of biomass production biomassν = 13ν , in (Table 7-2 marked with green). 

                (obj2). maximum of SUCC production, succinateν = 39ν  in (Table 7-2, marked with yellow). 

                For instance, small values of biomassν corresponds to ca. succinateν  = 17 mmol/gDW/hr.

c)	 The analysis of the physical meaning of CCM fluxes in the design GMO E. coli can indicate the viability of the optimization 
problem solution (design GMO). As previously mentioned, and marked in (Figure 7-1), succinate. production maximization can 
be achieved by removing some metabolic unessential steps, e.g., synthesis of ethanol, lactate, formate, glutamine, etc. which is in 
a fully agreements with the in-silico results of Burgard et al. [310] with using an extended cell CCM model (i.e., removed genes no. 
1, 3, 10, 50, 61, 73, 82, 83).” However, such a check of cell viability for each of the in-silico obtained GMO is extremely laborious, 
and an automatic rule might be adopted (for instance, the ’synthetic accessibility rule’ of Wunderlich and Mirny [337]). Other 
imposed constraints to the CCM-system can also be used in this respect, as previously discussed.

Solving Gene Knockout MINLP Problem with Imposing a Minimum Limit for the Succinate High 

Production 
The conflicting succinate and biomass production in E. coli cells indicates that several mutant cell solutions can be obtained, 

some with large succinateν  and low biomassν  levels, and vice-versa. To design cells with a high succinate production rate rather 
than a high biomass production rate, one alternative is to ’artificially’ introduce a constraint to the MINLP problem, by defining 
a lower limit for the succinate production rate, e.g., =10 mmol/gDW/hr. The results indicate a still large 
number of possible GMO-s with reduced CCM. networks, of close efficiency. Some of the obtained E. coli cell design GMO-s with 
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these supplementary constraints are presented in (Table 7-3), when removing 2 or 4 genes from the CCM. For instance, the 
solution with removed genes # {91and22} = [12.6, 2.90⋅10-12, 416] is close to the solution with removing genes # 
{61,73} = [16.5, 2.32⋅10-12, 484]. However, the most plausible GMO solution is that corresponding to the removed 
genes # {61,73}, thus blocking the production of LAC and FOR without disturbing the main metabolic pathway (as is the case 
when removing the flux #91 of (Figure 7-1). 

An alternative to imposing ’artificial’ thresholds for some fluxes of the CCM to ’force’ a certain GMO solution, is to increase 
the importance  of some fluxes in the composite MINLP objective function eq. (5-6). For instance, by adopting 

in eq. (6), other E. coli GMO cell strains can be obtained (two of them are displayed in (Table 7-3). Not only 
derivation of mutant cells of high succinate productivity is thus favored, but also the precision of the Pareto-optimal solution is 
roughly doubled (i.e., smaller  index) with using the same computational effort. The benefit of such an adjustable flux weight 
in achieving the composite goal is obvious, by the expense of requiring an extended computational effort when investigating the 
adjustable relative prioritizations of fluxes in the MINLP formulation. Comparatively to the LP approach, the advantage of MINLP 
with including nonlinear correlations among fluxes and constraints, recommends the MINLP approach as a worthy algorithm for 
designing GMO cells with desired optimized characteristics reporting higher performances of a biological BR.

Conclusions About the Use of HSMDM for the Optimal Design of GMO-S with Desired Characteristics
Application of a HSMDM model, including an extended structured CCM model of the analysed microorganism, and of a MINLP 

numerical procedure to in-silico find theoretical gene knockout alternatives (that is GMO-s) that optimize several formulated 
objectives (for instance, to maximize the production of a target metabolite, like SUCC here, and of the biomass in a BR) has 
been proved to be a very promising and effective numerical tool for in-silico design mutant cells with desired characteristics. 
The MINLP computational strategy described in this chapter can overcome the time-consuming complex combinatorial MILP 
problem solver (that corresponds to a multi-layer LP formulation) and can save considerable computing time by superposing 
the knockout rule to the basic NLP optimization approach. However, the identified multiple solutions of the MINLP problem, 
explained by the cell metabolism complexity, must be further ‘filtered’ by adding supplementary (non)linear constraints, other 
than the regular stoichiometric ones, leading to a considerably reduction in the number of gene-knockout alternatives. 

The use of the LP formulation ( )Max wv , with subjective weights ’w’ allocated to the target fluxes ’v’, or transformation of 
primal problem in a dual LP problem (for only bi-level optimization) is laborious, requiring formulating and prepare the derived 
dual problem. Moreover, the optimization problem solution is dependent on the adopted upper/lower bounds of the dual 
variables, while the resulting LP combinatorial problem when removing several genes from a large possible number becomes 
very competitive. Recent improvements of the LP numerical algorithm led to a better description of the optimal solution set, but 
do not overcome the very competitive combinatorial problem. 

The advantage of the proposed power-law type MINLP multi-objective function eq. (5-6,10), and of a structured HSMDM 
model (with including an extended CCM stationery/dynamic model) is coming from the possibility to account, in a simple way, 
for the flux nonlinear interactions and complex constraints as also mentioned in the literature [333,334,338]. The combinatorial 
rule is included. in the iterative MINLP solver, while the larger number of considered (nonlinear) constraints can increase the 
chance to obtain a reduced set of feasible gene knockout / GMO solutions for a given metabolic CCM network. The preferred 
MMA random search of Maria [71,72] can offer a higher reliability in finding a global solution (if any) of the optimal-flux-gene- 
knockout problem, with also providing the opportunity for the integer variables to span their range of possible values during 
the search of optimal metabolic fluxes. In such a manner, a continuous evaluation of the effects of removing various genes during 
the MINLP solver iterations is realized. Because the random searches are usually slowly convergent near the problem solution, 
approximate solutions are usually retained, with an acceptable precision of fulfilling the problem constraints. However, derivation 
of a larger set of optimal. GMO solutions by using an adjustable relative prioritization of fluxes in the MINLP formulation will lead 
to an extended computational effort. 

In any variant, the resulting multiple gene knockout GMO solutions have to be validated from several points of view, both 
theoretically (physical meaning) and experimentally. To reduce the number of MINLP solutions, careful formulation of the 
optimization problem constraints is crucial. Gene inference [312], feasible reaction pathways [337], or any information on 
protein-gene interactions, and on the genetic regulatory circuits (GRC, chap. 4.2-4.5) can be used for such purposes. On the other 
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hand, several criteria to check the design optimal GMO cells for viability can be used, for instance the Wunderlich and Mirny 
[337] synthetic accessibility index, or additional information on the gene inferences. 

A more systematic rule for designing mutant cells should be based on using hybrid stationary dynamic HSMDM models to 
incorporate stationary and kinetic information on the metabolic fluxes distribution over time. 

As will be discussed in the chap. 8 and proved by the examples (case studies) of this book, the use of HSMDM models with 
incorporating structured dynamic/stationary models (deterministic, with continues variables) of the cell CCM, offers multiple 
advantages in solving bioengineering and bioinformatic problems, such as:

a)	 In-silico (math model based) simulation of the bioreactor dynamics with an increased accuracy, simultaneously at a 
macroscopic- scale (bioreactor state variables), but also at a cell-scale (i.e. the main metabolites of the CCM). Such an advantage 
of the HSMDM models can immediately be used for various engineering analyses, such as bioreactor design, optimization, 
control, and can direct the in-silico research to design a GMO of optimized characteristics. 

b)	 Simulation of the mercury operon (mer-GRC) expression and relate the dynamics of mer-GRC cell-variables to those 
of the semi-continuous (SCR), three-phase fluidized (TPFB) bioreactor dynamics, in order to optimize the mercur uptake from 
wastewaters, and to predict the self-adaptation of the cell metabolism over dozens of cell cycles to the variable conditions of the 
bioreactor (case study no.1, chap. 5). In-silico design of E. coli GMO (cloned with mer-plasmids) to optimize the SCR bioreactor 
performances.

c)	  Simulation of the TRP-operon (tryptophan) expression and relate the dynamics of trp-GRC cell-variables to the dynamics 
of cell-metabolites involved in the CCM, and to the macro-scale dynamics of the fed-batch (FBR) bioreactor variables, in order 
to optimize the FBR operating policy, and to predict the increase of the TRP-productivity due to the use of a design GMO (case 
study no.2, chap. 6). 

d)	 The use of a hybrid CCM cell-scale structured kinetic model coupled with a BR dynamic model to maximize both biomass 
and succinate production by the in-silico design of GMO E. coli cells, with using an optimal gene knock-out numerical strategy 
(case study no.3, chap. 7).

Annex - Metabolic Stoichiometric Balance
Chemical and biochemical kinetics are based on the postulate that a reaction rate  can be expressed as a unique (usually 

nonlinear) function of the involved species concentrations , of all participating chemical species at a certain time ’t’. 
When (bio)chemical reactions are the only cause of concentration changes, that is the transport processes are negligible, the 
concentration dynamics, in a reacting system of constant volume, is given by the following mass balance ODE set [173].

                      (A1)

 When the (bio)chemical system subsists in a steady state, the balance equation (A1) in a matrix formulation becomes:

                                                                                                                                                                                                                               

                                                                                                                           (A2)

Where ‘*’ superscript denominates the steady-state values of the species concentrations. To exemplify the way to relate 
the stoichiometric matrix ’S’ to the steady state reaction rates (denominates as fluxes), the following metabolic reactions are 
considered [73].
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    (A3)

These two reactions are catalyzed by the enzyme’s hexokinase (HK, EC 2.7.1.1) and phosphoglucomutase (PGM, EC 5.4.2.2), 
respectively. By attaching the stoichiometric matrix of the two reactions (indexed with 1 and 2), the steady-state mass balance 
(A2) for the system (A3) can be written as:

            

 

                                                                                                                                                                                  (A4)

In the CCM mass balance, all the involved reacting species have been included. To be feasible and consistent, the mass balance 
has to be completed with the input/output fluxes into/from the system (see (Figure 4-40), and (Figure 4-41), and [21-22]). For 
larger biochemical systems, this procedure is neither necessary nor useful, allowing checking the molecular mass conservation 
relationships, to derive large models, and to study some properties of the system, related to the conservation relations and the 
reaction invariants, as long as the stationary flux vector is the null space of the matrix ’S’ [67,73].

Chap. 8. Conclusions and perspectives of using HSMDM for 
solving complex. engineering problems

The HSMDM kinetic models presented in the case studies no. (1-3) of this book are structured and are hybrid because they 
are extended on two levels of the bioprocess representation: (1) one on a nano-scopic, cellular scale, which uses as state variables 
the concentrations of the cell key-species; (2) the other is on a macro-scopic scale of the bioreactor bulk-phase, which refers to 
the dynamics of the bioreactor state variables (i.e. the directly measurable concentrations of metabolites in the liquid phase, 
by using classical analytical methods). It should be noted that, in such a hybrid kinetic model, the cellular state variables are 
directly connected to those of the bioreactor through the cellular import/export (excretion) processes of substrates / nutrients 
/ metabolites through the cell membrane. While, the dynamics of macro-molecular species, necessary for the estimation 
calculations of the hybrid kinetic model, can be easily measured by using current analytical techniques, by contrast, the dynamics 
of species (metabolites) at a cellular level are much difficult to measure, both at QSS or under dynamic conditions, although there 
have been remarkable recent advances in this field [227].

These advances allow the simultaneous measurement of a large number (600) of cellular metabolites and to monitor their 
evolution over time. These refined measurements allow evaluation of metabolic fluxes, under QSS or dynamic conditions, of an 
extended/reduced CCM scheme presented in (Figure 8-1), or (Figure 4-1 and Figure 4-23), by using the classical calculation 
method of Stephanopoulos et al. [188] schematically figured in (Figure 8-3). The three case studies presented and extensively 
discussed in this book proved that HSMDM structured hybrid models are valuable tools to be used in engineering/bioinformatic 
analyses for various purposes, such as:

1.	 Simulation of the bioreactor dynamics with an increased accuracy, simultaneously at a macroscopic (bioreactor state 
variables) scale, but also at a cell-scale (for the main metabolites of the CCM). Thus:

1.1.	 In the case study (no. 1)(chap. 5), the HSMDM structured hybrid model is able to predict the dynamics of [26(cell 
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species) + 3(bulk species)] vs. only [3 (bulk species)] by a classical macroscopic SCR bioreactor model, while covering a wider 
range of input substrate [Hg2+] loads, with using design cloned E. coli cells with various amounts of mercury-plasmids [Gmer] of 
(3-140 nM). Eventually this HSMDM model was used to in-silico design optimally cloned E. coli cells able to optimize the mercury 
removal from wastewaters. Eventually this HSMDM model was used by Maria and Luta [40] to derive the optimal operating 
policy of a FBR leading to maximize the mercury removal from wastewaters.

1.2.	 In the case study (no. 2) (chap. 6), the HSMDM structured hybrid model is able to predict the dynamics of [11(cell 
species) + 4(bulk species)] vs. only [3 (bulk species)] by a classical macroscopic FBR model, while covering a wider range 
of control variables (feed flowrates of the GLC solution), and various GMO E. coli cells strains. The extended bi-level hybrid 
kinetic model was proven to fairly represent the dynamics of an experimentally studied FBR under a nominal (uniform feeding) 
operating policy, for both macroscopic state variables and for the cell key species of the CCM reaction modules related to the 
TRP production and excretion in the FBR bulk, that is: [A] glycolysis, [B] ATP recovery system, [C] TRP operon expression, and 
biomass [X] growth. This extended HSMDM model was validated by using the recorded data from a lab-scale FBR over a long 
batch time (63 h). Eventually this HSMDM model was used by Maria and Renea [12] to derive the optimal operating policy of a 
FBR leading to TRP production maximization.

1.3.	 In the case study (no. 3) (chap. 7), the HSMDM structured hybrid model is able to predict the metabolic fluxes dynamics 
of [72(cell species), involved in 95 reactions + 2(bulk species, i.e. biomass, SUCC)] vs. only [2 (bulk species)] by a classical 
macroscopic BR model, while covering a wider range of control variables (GLC in the bioreactor), and various GMO E. coli cells 
strains. The extended bi-level hybrid kinetic model was proven to fairly represent the dynamics of a studied BR under a nominal 
operating policy, for both macroscopic state variables (GLC, SUCC, X) and for the cell key species of the CCM reaction modules 
related to the succinate (SUCC) production and excretion in the BR bulk. This extended HSMDM model was experimentally 
validated by Edwards and Palsson [4]. Eventually this HSMDM model was used by Maria et al. [42] to optimize a BR, by 
simultaneously maximizing the production of both biomass, and succinate by using this extended structured CCM model from 
literature.

2.	 Allows off-line evaluation, with a higher accuracy, of the optimal operating policy of the analysed bioreactor using a free, 
or an immobilized cell culture.

3.	 Allows various bioinformatics analyses, such as:

3.1.	 Highlight the close connection between the adaptation of cellular metabolism (cellular fluxes, according to the metabolic 
engineering principles of Stephanopoulos et al. [188]) and the dynamics of macroscopic state variables of the bioreactor.

3.2.	 An immediate application of (3.1) refers to the in-silico design of GMO-s suitable for the industrial applications objectives. 
This aspect is exemplified in the all three case studies. 

As again proved by the three case studies discussed here, the use of the main concepts, principles, and rules of the (bio) 
chemical engineering (BCE) [3,21,24,60,74,175,176] were proved to be beneficial when developing extended structured cell 
kinetic models used to solve difficult biochemical engineering, or bioengineering problems. By re-emphasizing the same idea, the 
use of BCE principles, concepts, and computational techniques, combined with nonlinear systems regulation theory techniques, 
advanced mathematical and numerical calculation methods, has proven to be extremely beneficial when developing extended 
hybrid structured (kinetic) cellular models (HSMDM), used to solve difficult biochemical or bioengineering problems [22-
23,178,278]. Here is to mention, from the literature, others successful applications of HSMDM models in solving (bio)chemical 
engineering problems. For instance:

(a)	 the HSMDM model used to optimize a FBR employed for the mono-clonal anti-bodies (mcAb) production using a 
hybridoma cell culture [11]

(b)	 The HSMDM model is used to optimize a FBR employed for mannitol. production from fructose based on a multi-
enzymatic inter-connected system.

(c)	 the case studies of chap.11 of [23], and [9]
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(d)	 The HSMDM model is used to optimize a BR employed for the yeast growth under oscillatory conditions [354-356].

 The reduced CCM reaction schema of S. cerevisiae to produce biomass is presented in (Figure 8-4). Under certain operating 
conditions of the BR, the dynamics of all metabolic species become oscillatory (Figure 8-5). That is because one of the intermediate 
(G), becomes an “oscillatory node” [357], being produced and consumed with different rates, simultaneously adjusted by rapid 
(+) feed backwards loops, and by slow (-) feed backwards loops. When S is in a big concentration in the cell, the rates (rSE, and 
rGE) are large, thus producing large amounts of E (ethanol). As a consequence, E is stored, later being transformed into R and 
X following a slow reaction. The enzyme T is considered to be present in small amounts, not being included in the biomass X. 
This enzyme is not degraded by the rT2 reaction, but only inactivated. The reduced kinetic model of this structured CCM model, 
together with its rate constants are given in (Figure 8-6). Simulations of the BR by using this HSMDM model with the initial 
condition of (Figure 8-6) is given in (Figure 8-5). It is to observe that the oscillation node ’G’ exhibits a’ flat teeth’ and ’flip flop’ 
behaviour, while the dynamics of species further away from the oscillation node reports a periodic sharp increase/decrease. 

Once again, the three approached case studies of this book exemplify how the use of a hybrid kinetic model of HSMDM type, 
based on the cellular CCM, of moderate size, and including several inter-connected modules of reaction pathways and GRC-s, is 
a modern, accurate and valuable computing tool when developing structured simulators for various engineering applications 
such as:

(a)	 Analysis of cellular metabolic fluxes under variable operating conditions of the bioreactor

(b)	 Optimizing the synthesis of the desired metabolite by optimizing the operation of the bioreactor and / or by genetic 
modification of the cell culture

(c)	 In-silico reprogramming (based on mathematical model) of cellular metabolism by designing GMO-s with desired 
characteristics [21-23,178]

(d)	 A rapid analysis of the cellular metabolism (i.e., the main metabolic fluxes), leading to an assessment of the use of the 
substrate into the cell, and of the conditions for the occurrence of cellular oscillations, or those leading to a quasi-stationary 
operation (QSS) of the bioreactor.

(e)	 Structural interpretations of metabolic changes in GMO-s in direct connection with the operation mode of the bioreactor

(f)	 More precise optimization of the bioreactor operation (see chap. 6.6, as an example)

(g)	 Obtaining simple reduced models by using the BCE algorithms and rules [29,64,67], ‘locally’ valid (in the operating 
parameters - time space), for an effective on- / off-line control of the analyzed bioreactor

(h)	 More accurate extrapolations of the bioprocess dynamics in the studied bioreactor, over dozens of cell cycles

(i)	 Determination of the bioreactor optimal operating conditions, in respect to multiple objectives, aiming to minimize the 
substrate consumption, but maintaining a high productivity for the desirable metabolite (e.g., TRP in the case study 2, or SUCC 
in the case study 3).
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